Ask Dr. Sher- Open Forum

dr geoffrey sher ivf infertility You are not alone. Dr. Sher is here to answer your questions and support you.

If you would like to schedule a one on one online consultation, telephone, or in person consultation with Dr. Sher, please fill out the form on the right and our team will get you scheduled right away.

Dear Patients,

I created this forum to welcome any questions you have on the topic of infertility, IVF, conception, testing, evaluation, or any related topics. I do my best to answer all questions in less than 24 hours. I know your question is important and, in many cases, I will answer within just a few hours. Thank you for taking the time to trust me with your concern.

– Geoffrey Sher, MD

Ask a question or post a comment

 

26,102 Comments

Fiza

My baby died after 13 days of birth with delayed cried reason can u explain me why this happened please

reply
Dr. Geoffrey Sher

So sorry…so sad!

You would need to discuss this with your OB!

G-d bless!

Geoff Sher

reply
Kelsey C.

Hello my first hcg level was taken on 9/14 came back 44..48 hours later it was 218 then 6 days later 783 then 48 hours after that on 9/24 1008. Now on 10/7 it came back 14,293 and we saw a fetal pole with flicker..but measurements were 1 week behind. A small blood clot was noted. Do you think everything seems to be going well?

reply
Ashley Sharma

Hello Dr,
I am 4 weeks and 1 day pregnant today. I implanted quite early as I got a very dark postive trst at 9DPO after iui. During the 3rd week of pregnancy, I got my hcg levels checked 3 times, 48 hours apart. My understanding is that hcg doubles not just every 48 hours BUT every 48-72 hours. My clinic nurse says everything is on track and I wanted your opinion on them.
12DPO : 114
14DPO: 282
16DPO : 565.5
I was told no further bloodwork is needed and to wait for my first ultrasound at 6 weeks.

reply
Hailey

Hi Dr. Sher, I’d like to hear your opinion on the rise of my hcg levels. I had a positive early pregnancy test at 3w1d.
4w4d- 1600
5w4d- 6700
6w4d- 14000
I’ve had no cramping or bleeding . Do you think they are rising appropriately or are they too slow? I have a US at 8w1d.
Thank you!

reply
Dr. Geoffrey Sher

I think it is reasonable. Once levels get into the thousands, they often stop doubling every 2 days. At this level of hCG, an US will be definitive.

Good luck!

Geoff Sher

reply
Hailey Stewart

Hi Dr. Sher,
At 7w5d my hcg went up to 20000. I had a US today at 8w1d and they said I was measuring at 5-6 weeks and that I need to come in for another US in 2 weeks. I’m absolutely certain of my LMP and quite sure of ovulation. Do you think there is any hope of this pregnancy progressing?
Thank you for your insight!

reply
Joseph

Hi Doctor

looking for your insight on low but doubling HCG levels. Any advice would be highly appreciated

Edit: 9dp5dt hcg 20

12dp5dt 68

15dp5dt 128

17dp5dt 282

19dp5dt 470

reply
Dr. Geoffrey Sher

It could still be OK! Do an US at 6-7 weeks for a more definitive result!

Good luck!

Geoff Sher

reply
Brett Willer

My wife is now 9 weeks pregnant (we did IVF). Her TSH level at around 5 weeks was 3.9. She’s been on Levothyroxine .025 mg (25 mcg) for the past month, and her TSH level is now .50.

Is it ok for her to stay on the same dosage, or can TSH get too low?

Thanks!

reply
Dr. Geoffrey Sher

It is probably harmless but your doctor should measure T3/T4 levels to make certainn they do not go too high!

Good luck!

Geoff Sher

reply
Brett

Dr., Thank you for the reply. She has a follow up with a specialist in 3 weeks, would it be ok to ask about T3/T4 levels then?

Thank you

reply
Anu

Dr. Sher,

I had an embryo transfer euploid, BG5AA grade, High embryo score.

My day 11 beta hcg is 1100 U/ litre.

Is this a confirmation that I am pregnant?

reply
Nimeh

Hi Dr. sher

So October 2 I found out that I was pregnant October 5 I went to my first OB appointment where they did a transvaginal ultrasound and there was no Visibility of the gestational sac and currently my hCG levels are 98 is this something I should be concerned about?

reply
Dr. Geoffrey Sher

It is much too early for an US. This should be done at 6-7 weeks!

Geoff Sher

reply
Nesha

Hi Dr. Sher –

I had a transfer on Sept 12th and on Sept 27th received a positive HCG of 1122. October 4th US showed gestational sac and yolk sac and Dr said everything looks good but HCG 2657 and October 6th HCG 3139. Does this sound promising?

reply
Sheena Swan

Hi Dr Sher,
How can you tell if you have late implantation issues? With late implantation should the HCG test be deferred and progesterone continued for a few days later? Thanks so much in advance! You are such a strength of support

reply
Dr. Geoffrey Sher

The rate of rise in hCG and ultimately an US at 6-7 weeks should be indicative!

Geoff Sher

reply
Sheena Swan

Thank you! How many days later can a late implantation occur? Can I still test HCG on cycle day 28 with a late implantation or should I wait and if so how many days should I wait? Thanks so much!

reply
Veronica Russo

Hi good sir,
I am 40.5 years old, AMA 1.7 and FSH 7. I have h/o RPL of recent, all spontaneously conceived in last 2 years at age 38-40: 17 weeks (euploid female), 12 weeks (euploid female) and x 2 biochemicals. I have 3 earthside children also spontaneously conceived in my mid 30s. We’ve decided to do IVF for PGT-A (give my AMA) and concomitantly undergo reproductive immunology work up as well due to my RPL (I’ve been extensively worked up thus far by local academic REI; no balanced translocations in myself or husband, no autoimmune phenomena, possible thrombophilia risk with homozygosity for MTHFR A1298c).

I am not performing very well s/p x 2 retrievals spaced 1 mo apart am I’m confused why given that I’ve demonstrated I am quite capable of spontaneously conceiving without assistance thus far in life, including with my recent 12 week loss. First cycle I was on provera x 30 days after which stimulation protocol was commenced with lupron 10 u, gonal-f 200, and menopur 75. I stim’d for 9 days; retrieved 8 mature follicles, all 8 mature oocytes fertilized with ICSI, day 3 all rated fair to good (6-10 cells), but yielded only 3 blasts by day 6 (5CC x 2 which were discarded per lab protocol and a 5BB that was high level mosaic 12+). Second retrieval a few days ago went terrible. I started provera 6 days after my 1st retrieval (we are doing back to back retrievals) for 10 days, and then lupron was started 4 days after the start of provera as an overlap during priming phase at 10 u daily. 5 days after lupron 10 u was commenced, I was told to stop provera, continue lupron but half dose at 5 u and also to start my gonadatropins (gonal-f 200 and menopur 75). I stim’d for 9 days, but only retrieved 6 follicles, x4 M2 oocyctes, x1 M1 oocyte, and another oocyte that disintegrated. Day 3 report delivered today is dismal: only one that is rated good at 9 cell stage; the rest are 4 cells or less and rated poor.

What are we doing wrong? Why am I performing so terribly? No known sperm factor issues either. Also on usual recommended supplements but not on DHEA. Any insight on your end in terms of my protocols? Are some people just BAD at IVF and do better with in vivo fertilization such as IUI or natural? I’m admittedly surprised by my performance. And becoming increasingly despondent. Thank you sir!

reply
Dr. Geoffrey Sher

When it comes to reproduction, humans are the poorest performers of all mammals. In fact we are so inefficient that up to 75% of fertilized eggs do not produce live births, and up to 30% of pregnancies end up being lost within 10 weeks of conception (in the first trimester). RPL is defined as two (2) or more failed pregnancies. Less than 5% of women will experience two (2) consecutive miscarriages, and only 1% experience three or more.
Pregnancy loss can be classified by the stage of pregnancy when the loss occurs:
• Early pregnancy loss (first trimester)
• Late pregnancy loss (after the first trimester)
• Occult “hidden” and not clinically recognized, (chemical) pregnancy loss (occurs prior to ultrasound confirmation of pregnancy)
• Early pregnancy losses usually occur sporadically (are not repetitive).

In more than 70% of cases the loss is due to embryo aneuploidy (where there are more or less than the normal quota of 46 chromosomes). Conversely, repeated losses (RPL), with isolated exceptions where the cause is structural (e.g., unbalanced translocations), are seldom attributable to numerical chromosomal abnormalities (aneuploidy). In fact, the vast majority of cases of RPL are attributable to non-chromosomal causes such as anatomical uterine abnormalities or Immunologic Implantation Dysfunction (IID).
Since most sporadic early pregnancy losses are induced by chromosomal factors and thus are non-repetitive, having had a single miscarriage the likelihood of a second one occurring is no greater than average. However, once having had two losses the chance of a third one occurring is double (35-40%) and after having had three losses the chance of a fourth miscarriage increases to about 60%. The reason for this is that the more miscarriages a woman has, the greater is the likelihood of this being due to a non-chromosomal (repetitive) cause such as IID. It follows that if numerical chromosomal analysis (karyotyping) of embryonic/fetal products derived from a miscarriage tests karyotypically normal, then by a process of elimination, there would be a strong likelihood of a miscarriage repeating in subsequent pregnancies and one would not have to wait for the disaster to recur before taking action. This is precisely why we strongly advocate that all miscarriage specimens be karyotyped.
There is however one caveat to be taken into consideration. That is that the laboratory performing the karyotyping might unwittingly be testing the mother’s cells rather than that of the conceptus. That is why it is not possible to confidently exclude aneuploidy in cases where karyotyping of products suggests a “chromosomally normal” (euploid) female.
Late pregnancy losses (occurring after completion of the 1st trimester/12th week) occur far less frequently (1%) than early pregnancy losses. They are most commonly due to anatomical abnormalities of the uterus and/or cervix. Weakness of the neck of the cervix rendering it able to act as an effective valve that retains the pregnancy (i.e., cervical incompetence) is in fact one of the commonest causes of late pregnancy loss. So also are developmental (congenital) abnormalities of the uterus (e.g., a uterine septum) and uterine fibroid tumors. In some cases intrauterine growth retardation, premature separation of the placenta (placental abruption), premature rupture of the membranes and premature labor can also causes of late pregnancy loss.
Much progress has been made in understanding the mechanisms involved in RPL. There are two broad categories:
1. Problems involving the uterine environment in which a normal embryo is prohibited from properly implanting and developing. Possible causes include:
• Inadequate thickening of the uterine lining
• Irregularity in the contour of the uterine cavity (polyps, fibroid tumors in the uterine wall, intra-uterine scarring and adenomyosis)
• Hormonal imbalances (progesterone deficiency or luteal phase defects). This most commonly results in occult RPL.
• Deficient blood flow to the uterine lining (thin uterine lining).
• Immunologic implantation dysfunction (IID). A major cause of RPL. Plays a role in 75% of cases where chromosomally normal preimplantation embryos fail to implant.
• Interference of blood supply to the developing conceptus can occur due to a hereditary clotting disorder known as Thrombophilia.

2. Genetic and/or structural chromosomal abnormality of the embryo.Genetic abnormalities are rare causes of RPL. Structural chromosomal abnormalities are slightly more common but are also occur infrequently (1%). These are referred to as unbalanced translocation and they result from part of one chromosome detaching and then fusing with another chromosome. Additionally, a number of studies suggest the existence of paternal (sperm derived) effect on human embryo quality and pregnancy outcome that are not reflected as a chromosomal abnormality. Damaged sperm DNA can have a negative impact on fetal development and present clinically as occult or early clinical miscarriage. The Sperm Chromatin Structure Assay (SCSA) which measures the same endpoints are newer and possibly improved methods for evaluating.

IMMUNOLOGIC IMPLANTATION DYSFUNCTION
Autoimmune IID: Here an immunologic reaction is produced by the individual to his/her body’s own cellular components. The most common antibodies that form in such situations are APA and antithyroid antibodies (ATA).
But it is only when specialized immune cells in the uterine lining, known as cytotoxic lymphocytes (CTL) and natural killer (NK) cells, become activated and start to release an excessive/disproportionate amount of TH-1 cytokines that attack the root system of the embryo, that implantation potential is jeopardized. Diagnosis of such activation requires highly specialized blood test for cytokine activity that can only be performed by a handful of reproductive immunology reference laboratories in the United States.
Alloimmune IID, i.e., where antibodies are formed against antigens derived from another member of the same species, is believed to be a relatively common immunologic cause of recurrent pregnancy loss.
Autoimmune IID is often genetically transmitted. Thus it should not be surprising to learn that it is more likely to exist in women who have a family (or personal) history of primary autoimmune diseases such as lupus erythematosus (LE), scleroderma or autoimmune hypothyroidism (Hashimoto’s disease), autoimmune hyperthyroidism (Grave’s disease), rheumatoid arthritis, etc. Reactionary (secondary) autoimmunity can occur in conjunction with any medical condition associated with widespread tissue damage. One such gynecologic condition is endometriosis. Since autoimmune IID is usually associated with activated NK and T-cells from the outset, it usually results in such very early destruction of the embryo’s root system that the patient does not even recognize that she is pregnant. Accordingly the condition usually presents as “unexplained infertility” or “unexplained IVF failure” rather than as a miscarriage.
Alloimmune IID, on the other hand, usually starts off presenting as unexplained miscarriages (often manifesting as RPL). Over time as NK/T cell activation builds and eventually becomes permanently established the patient often goes from RPL to “infertility” due to failed implantation. RPL is more commonly the consequence of alloimmune rather than autoimmune implantation dysfunction.
However, regardless, of whether miscarriage is due to autoimmune or alloimmune implantation dysfunction the final blow to the pregnancy is the result of activated NK cells and CTL in the uterine lining that damage the developing embryo’s “root system” (trophoblast) so that it can no longer sustain the growing conceptus. This having been said, it is important to note that autoimmune IID is readily amenable to reversal through timely, appropriately administered, selective immunotherapy, and alloimmune IID is not. It is much more difficult to treat successfully, even with the use of immunotherapy. In fact, in some cases the only solution will be to revert to selective immunotherapy plus using donor sperm (provided there is no “match” between the donor’s DQa profile and that of the female recipient) or alternatively to resort to gestational surrogacy.
DIAGNOSING THE CAUSE OF RPL
In the past, women who miscarried were not evaluated thoroughly until they had lost several pregnancies in a row. This was because sporadic miscarriages are most commonly the result of embryo numerical chromosomal irregularities (aneuploidy) and thus not treatable. However, a consecutive series of miscarriages points to a repetitive cause that is non-chromosomal and is potentially remediable. Since RPL is most commonly due to a uterine pathology or immunologic causes that are potentially treatable, it follows that early chromosomal evaluation of products of conception could point to a potentially treatable situation. Thus I strongly recommend that such testing be done in most cases of miscarriage. Doing so will avoid a great deal of unnecessary heartache for many patients.
Establishing the correct diagnosis is the first step toward determining effective treatment for couples with RPL. It results from a problem within the pregnancy itself or within the uterine environment where the pregnancy implants and grows. Diagnostic tests useful in identifying individuals at greater risk for a problem within the pregnancy itself include:

Karyotyping (chromosome analysis) both prospective parents
• Assessment of the karyotype of products of conception derived from previous miscarriage specimens
• Ultrasound examination of the uterine cavity after sterile water is injected or sonohysterogram, fluid ultrasound, etc.)
• Hysterosalpingogram (dye X-ray test)
• Hysteroscopic evaluation of the uterine cavity
• Full hormonal evaluation (estrogen, progesterone, adrenal steroid hormones, thyroid hormones, FSH/LH, etc.)
• Immunologic testing to include:
a) Antiphospholipid antibody (APA) panel
b) Antinuclear antibody (ANA) panel
c) Antithyroid antibody panel (i.e., antithyroglobulin and antimicrosomal antibodies)
d) Reproductive immunophenotype
e) Natural killer cell activity (NKa) assay (i.e., K562 target cell test)
f) Alloimmune testing of both the male and female partners

TREATMENT OF RPL
Treatment for Anatomic Abnormalities of the Uterus: This involves restoration through removal of local lesions such as fibroids, scar tissue, and endometrial polyps or timely insertion of a cervical cerclage (a stitch placed around the neck of the weakened cervix) or the excision of a uterine septum when indicated.
Treatment of Thin Uterine Lining: A thin uterine lining has been shown to correlate with compromised pregnancy outcome. Often this will be associated with reduced blood flow to the endometrium. Such decreased blood flow to the uterus can be improved through treatment with sildenafil and possibly aspirin.
Sildenafil (Viagra) Therapy. Viagra has been used successfully to increase uterine blood flow. However, to be effective it must be administered starting as soon as the period stops up until the day of ovulation and it must be administered vaginally (not orally). Viagra in the form of vaginal suppositories given in the dosage of 25 mg four times a day has been shown to increase uterine blood flow as well as thickness of the uterine lining. To date, we have seen significant improvement of the thickness of the uterine lining in about 70% of women treated. Successful pregnancy resulted in 42% of women who responded to the Viagra. It should be remembered that most of these women had previously experienced repeated IVF failures.
Use of Aspirin: This is an anti-prostaglandin that improves blood flow to the endometrium. It is administered at a dosage of 81 mg orally, daily from the beginning of the cycle until ovulation.
Treating Immunologic Implantation Dysfunction with Selective Immunotherapy: Modalities such as IL/IVIg, heparinoids (Lovenox/Clexane), and corticosteroids (dexamethasone, prednisone, prednisolone) can be used in select cases depending on autoimmune or alloimmune dysfunction.
The Use of IVF in the Treatment of RPL
In the following circumstances, IVF is the preferred option:
1. When in addition to a history of RPL, another standard indication for IVF (e.g., tubal factor, endometriosis, and male factor infertility) is superimposed.
2. In cases where selective immunotherapy is needed to treat an immunologic implantation dysfunction.
The reason for IVF being a preferred approach in such cases is that in order to be effective, the immunotherapy needs to be initiated well before spontaneous or induced ovulation. Given the fact that the anticipated birthrate per cycle of COS with or without IUI is at best about 15%, it follows that short of IVF, to have even a reasonable chance of a live birth, most women with immunologic causes of RPL would need to undergo immunotherapy repeatedly, over consecutive cycles. Conversely, with IVF, the chance of a successful outcome in a single cycle of treatment is several times greater and, because of the attenuated and concentrated time period required for treatment, IVF is far safer and thus represents a more practicable alternative
Since embryo aneuploidy is a common cause of miscarriage, the use of preimplantation genetic diagnosis (PGD), with tests such as CGH, can provide a valuable diagnostic and therapeutic advantage in cases of RPL. PGD requires IVF to provide access to embryos for testing.
There are a few cases of intractable alloimmune dysfunction due to absolute DQ alpha matching where Gestational Surrogacy or use of donor sperm could represent the only viable recourse, other than abandoning treatment altogether and/or resorting to adoption. Other non-immunologic factors such as an intractably thin uterine lining or severe uterine pathology might also warrant that last resort consideration be given to gestational surrogacy.
The good news is that if a couple with RPL is open to all of the diagnostic and treatment options referred to above, a live birthrate of 70%–80% is ultimately achievable.
I strongly recommend that you visit http://www.SherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.
• The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
• Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
• IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
• The Fundamental Requirements For Achieving Optimal IVF Success
• Ovarian Stimulation for IVF using GnRH Antagonists: Comparing the Agonist/Antagonist Conversion Protocol.(A/ACP) With the “Conventional” Antagonist Approach
• Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
• Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
• Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
• The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
• Blastocyst Embryo Transfers Should be the Standard of Care in IVF
• IVF: How Many Attempts should be considered before Stopping?
• “Unexplained” Infertility: Often a matter of the Diagnosis Being Overlooked!
• IVF Failure and Implantation Dysfunction:
• The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID):PART 1-Background
• Immunologic Implantation Dysfunction (IID) & Infertility (IID):PART 2- Making a Diagnosis
• Immunologic Dysfunction (IID) & Infertility (IID):PART 3-Treatment
• Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
• Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management:(Case Report
• Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
• Intralipid (IL) Administration in IVF: It’s Composition; How it Works; Administration; Side-effects; Reactions and Precautions
• Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
• Endometrial Thickness, Uterine Pathology and Immunologic Factors
• Vaginally Administered Viagra is Often a Highly Effective Treatment to Help Thicken a Thin Uterine Lining
• Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
• A personalized, stepwise approach to IVF
• How Many Embryos should be transferred: A Critical Decision in IVF.
• The Role of Nutritional Supplements in Preparing for IVF

______________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
Veronica Russo

Hi Dr. Sher,
Thank you for the info re: RPL; I am undergoing this RI workup concomitant with IVF.
I was mostly interested in your analysis of my stim protocols in my original post.
My REI agreed he oversuppressed me with lupron long protocol this last cycle (gonadotropins included menopur 75 and gonal-f 200). He advised we switch to E, P, and omnitrope priming strategy and them stim with higher dose of menopur at 150 and lower dose of gonal-f at 275. I’m 40, AMH 1.7, FSH 7.

reply
Kim

Hello Dr. Sher,

What are your thoughts on platelet rich plasma (PRP) Is it something you would recommend for RPL?

reply
Sheena

Hi Dr Sher,
What are your thoughts on ERA testing?

If I am taking Progesterone the month before the ERA test does this distort the results? Should you be on a natural cycle the month before testing?

Thanks so much for all your help and support!

reply
Dr. Geoffrey Sher

The blastocyst and the endometrium are in a constant state of cross-talk. In order for successful implantation to take place, the blastocyst must be at the appropriate stage of development, and needs to signal a well synchronized endometrium to ‘accept it”. This dialogue between embryo and endometrium involves growth factors, cytokines, immunologic accommodations, cell adhesion molecules, and transcription factors. These are all mostly genetically driven but are also heavily influenced by numerous physiologic, pathophysiologic, hormonal and molecular mechanisms capable of profoundly affecting the receptivity of the secretory endometrium to the overtures made by the embryo, to implant.
Embryo implantation takes place 6-9 days after ovulation. This period is commonly referred to as the “window of implantation (WOI)”. In the past it was believed that as long as the embryo reached the uterus in this 4 day time frame, its chance of implanting would not be affected.
In 2013, after evaluating 238 genes in the secretory endometrium and applying bioformatics, Ruiz-Alonzo, et all introduced the Endometrial Receptivity Array (ERA) . Using this test, they categorized mid-secretory endometria into 4 categories: “a) proliferative, b) pre-receptive, c) receptive or d) post-receptive”. They claimed that women with pre-receptive or post-receptive endometria were more likely to experience failed implantation post-embryo transfer (ET).
It was in large part this research which suggested that the concept of a relatively “wide” (4day) WOI, was flawed, that an optimal WOI is likely much narrower and could be a critical factor in determining the success or failure of implantation post-ET. Ruiz-Alonzo also reported that about 25% of women with recurrent IVF failure (RIF), have pre, or post-receptive endometria. They presented data suggesting that viable IVF pregnancy rates could be enhanced,
by deferring FET by about 24 hours in women who had pre-receptive endometria and bringing ET forward by the same amount of time, in women with post-receptive endometria,

There is no doubt that ERA testing has opened the door to an intriguing arena for research. Presently however, available data is inconclusive. Here, following recent studies are 2 dissenting opinions regarding the value for ERA:
• Basil and Casper (2018) state: “Performing the ERA test in a mock cycle prior to a FET does not seem to improve the ongoing pregnancy rate in good prognosis patients. Further large prospective studies are needed to elucidate the role of ERA testing in both good prognosis patients and in patients with recurrent implantation failure”
• Churchill and Comstock (2017) conclude:” In our preliminary observations, the non-receptive ERA group had similar live birth rates compared to the receptive ERA group. It appears the majority of the pregnancies conceived in the non-receptive group occurred during ovulatory cycles and thus a non-receptive ERA in a medicated cycle likely does not have prognostic value for ovulatory cycles. Larger studies are needed to assess the prognostic value of ERA testing in the gen-eral infertility population.”
There are additional negatives that relate to the considerable emotional and financial cost of doing ERA testing:
1. First, the process costs $600-$1000 to undertake
2. , Second, it requires that the patient undergo egg retrieval, vitrify (cryobank) all blastocysts, res for 1 or more cycles to allow their hormonal equilibrium to restore, do an ERA biopsy to determine the synchronicity of the endometrium, wait a few weeks for the results of the test and thereupon engage in undertaking an additional natural or hormonal preparation cycle for timed FET. This represents a significant time lapse, emotional cost and additional expense.
Presently, ERA testing is only advocated for women who have experienced several IVF failures. However, some authorities are beginning to advocate that it become routine for women undergoing all IVF.
The additional financial cost inherent in the performance of the ERA test ($600-$1000), the considerable time delay in getting results, the fact that awaiting results of testing and preparing the patient for FET, of necessity extends the completion of the IVF/ET process by at least a few months, all serve to increase the emotional and financial hardship confronting patients undergoing ERA. Such considerations, coupled with the current absence of conclusive data that confirm efficacy, are arguments against the widespread use of ERA . In my opinion, ERA testing should presently be considered as being one additional diagnostic and be confined to women with “unexplained” RIF.
Gold standard statistical analyses require that all confounding variables be controlled while examining the effect of altering the one under assessment. There is an obvious interplay of numerous, ever changing variables involved in outcome following ET, e.g. embryo competency, anatomical configuration of the uterus and the contour of the endometrial cavity, endometrial thickness, immunologic and molecular factors as well as the very important effect of technical skill/expertise in performing the ET procedure …(to mention but a few). It follows that it is virtually impossible to draw reliable conclusions from IVF-related randomized controlled studies that use outcome as the end-point. This applies equally to results reported following “ gold standard” testing on the efficacy of ERA and, is one of the main reasons why I question the reliability of reported data (positive or negative).
The fact is that IVF (and related technologies) constitute neither a “pure science” nor a “pure art”. Rather they represent an “art-science blend”, where scientific principles applied to longitudinal experience and technical expertise coalesce to produce a biomedical product that will invariably differ (to a greater or lesser degree) from one set of clinical circumstances to another.
Since, the ultimate goal of applied Assisted Reproductive Medicine is to safely achieve the birth of a viable and healthy baby, the tools we apply, that are aimed at achieving this end-point, are honed through the adaptation of scientific principles and concepts, experience and expertise, examined and tested longitudinally over time. Needless to say, the entire IVF/ET process is of necessity subject to change and adaptation as new scientific and technical developments emerge.
This absolutely applies to the ERA as well!

Geoff Sher
PH: 702-533-2691

reply
Sheena

Hi Dr Sher,
I am currently trying naturally but take Progesterone after ovulation due to a luteal phase defect. Sometimes I have taken progesteron too long and start spotting whilst on it. I am now looking into doing an Era test prior to a medicated FET. Please could you advise if I should be on a natural cycle the cycle BEFORE doing the Era test (ie without progesterone in the luteal phase)? Will the progesterone from the cycle before distort the Era test results? As I have found my follicular phase seems to be shorter at times if I take the progesterone too long. Thanks so much!

reply
Dr. Geoffrey Sher

I am not a believer in ERA testing. However, if you are resolved to go this route, then yes, it is wise to take a month off first. The progesterone used prior, should not affect the test!

Good luck!

Geoff Sher

reply
Sheena

Thank you so much! Why do you think it’s worth taking a month off before doing ERA, if the Progesterone I’m taking should not affect the test results? Thank you so much!

reply
Dr. Geoffrey Sher

You could do it earlier. However, taking a month break will allow ovarian function to return to normal and that provides a better foundation upon which to base interpretation of test results.

Geoff Sher

reply
Sheena

Thank you … do you mean that the results of the ERA test will be more accurate if I take a month’s break rather than going straight into doing ERA from a month with progesterone? Please could you explain what you mean that it will provide a “better foundation to base interpretation of results”

Dr. Geoffrey Sher

I am not a fan of ERA testing (see below). However, if you are going to use this test, giving your body a one month break after having done a prior cycle, will in my opinion allow your hormonal balance to be more likely to return to normal and make the results more reliable.

The blastocyst and the endometrium are in a constant state of cross-talk. In order for successful implantation to take place, the blastocyst must be at the appropriate stage of development, and needs to signal a well synchronized endometrium to ‘accept it”. This dialogue between embryo and endometrium involves growth factors, cytokines, immunologic accommodations, cell adhesion molecules, and transcription factors. These are all mostly genetically driven but are also heavily influenced by numerous physiologic, pathophysiologic, hormonal and molecular mechanisms capable of profoundly affecting the receptivity of the secretory endometrium to the overtures made by the embryo, to implant.
Embryo implantation takes place 6-9 days after ovulation. This period is commonly referred to as the “window of implantation (WOI)”. In the past it was believed that as long as the embryo reached the uterus in this 4 day time frame, its chance of implanting would not be affected.
In 2013, after evaluating 238 genes in the secretory endometrium and applying bioformatics, Ruiz-Alonzo, et all introduced the Endometrial Receptivity Array (ERA) . Using this test, they categorized mid-secretory endometria into 4 categories: “a) proliferative, b) pre-receptive, c) receptive or d) post-receptive”. They claimed that women with pre-receptive or post-receptive endometria were more likely to experience failed implantation post-embryo transfer (ET).
It was in large part this research which suggested that the concept of a relatively “wide” (4day) WOI, was flawed, that an optimal WOI is likely much narrower and could be a critical factor in determining the success or failure of implantation post-ET. Ruiz-Alonzo also reported that about 25% of women with recurrent IVF failure (RIF), have pre, or post-receptive endometria. They presented data suggesting that viable IVF pregnancy rates could be enhanced,
by deferring FET by about 24 hours in women who had pre-receptive endometria and bringing ET forward by the same amount of time, in women with post-receptive endometria,

There is no doubt that ERA testing has opened the door to an intriguing arena for research. Presently however, available data is inconclusive. Here, following recent studies are 2 dissenting opinions regarding the value for ERA:
• Basil and Casper (2018) state: “Performing the ERA test in a mock cycle prior to a FET does not seem to improve the ongoing pregnancy rate in good prognosis patients. Further large prospective studies are needed to elucidate the role of ERA testing in both good prognosis patients and in patients with recurrent implantation failure”
• Churchill and Comstock (2017) conclude:” In our preliminary observations, the non-receptive ERA group had similar live birth rates compared to the receptive ERA group. It appears the majority of the pregnancies conceived in the non-receptive group occurred during ovulatory cycles and thus a non-receptive ERA in a medicated cycle likely does not have prognostic value for ovulatory cycles. Larger studies are needed to assess the prognostic value of ERA testing in the gen-eral infertility population.”
There are additional negatives that relate to the considerable emotional and financial cost of doing ERA testing:
1. First, the process costs $600-$1000 to undertake
2. , Second, it requires that the patient undergo egg retrieval, vitrify (cryobank) all blastocysts, res for 1 or more cycles to allow their hormonal equilibrium to restore, do an ERA biopsy to determine the synchronicity of the endometrium, wait a few weeks for the results of the test and thereupon engage in undertaking an additional natural or hormonal preparation cycle for timed FET. This represents a significant time lapse, emotional cost and additional expense.
Presently, ERA testing is only advocated for women who have experienced several IVF failures. However, some authorities are beginning to advocate that it become routine for women undergoing all IVF.
The additional financial cost inherent in the performance of the ERA test ($600-$1000), the considerable time delay in getting results, the fact that awaiting results of testing and preparing the patient for FET, of necessity extends the completion of the IVF/ET process by at least a few months, all serve to increase the emotional and financial hardship confronting patients undergoing ERA. Such considerations, coupled with the current absence of conclusive data that confirm efficacy, are arguments against the widespread use of ERA . In my opinion, ERA testing should presently be considered as being one additional diagnostic and be confined to women with “unexplained” RIF.
Gold standard statistical analyses require that all confounding variables be controlled while examining the effect of altering the one under assessment. There is an obvious interplay of numerous, ever changing variables involved in outcome following ET, e.g. embryo competency, anatomical configuration of the uterus and the contour of the endometrial cavity, endometrial thickness, immunologic and molecular factors as well as the very important effect of technical skill/expertise in performing the ET procedure …(to mention but a few). It follows that it is virtually impossible to draw reliable conclusions from IVF-related randomized controlled studies that use outcome as the end-point. This applies equally to results reported following “ gold standard” testing on the efficacy of ERA and, is one of the main reasons why I question the reliability of reported data (positive or negative).
The fact is that IVF (and related technologies) constitute neither a “pure science” nor a “pure art”. Rather they represent an “art-science blend”, where scientific principles applied to longitudinal experience and technical expertise coalesce to produce a biomedical product that will invariably differ (to a greater or lesser degree) from one set of clinical circumstances to another.
Since, the ultimate goal of applied Assisted Reproductive Medicine is to safely achieve the birth of a viable and healthy baby, the tools we apply, that are aimed at achieving this end-point, are honed through the adaptation of scientific principles and concepts, experience and expertise, examined and tested longitudinally over time. Needless to say, the entire IVF/ET process is of necessity subject to change and adaptation as new scientific and technical developments emerge.
This absolutely applies to the ERA as well!

Geoff Sher

Sheena Swan

Hi Dr Sher, in addition to the above query … if I’m taking progesterone every natural cycle (in between FET transfers) do you still think it’s better to take a month break of progesterone before doing the ERA test?

Sheena Swan

Hi Dr Sher, thank you for your response. Just to clarify though … I am not doing a medicated transfer cycle. All I am doing is taking Progesterone after ovulating naturally (due to a luteal phase defect), with no other medication. Does your opinion still stand that the ERA result is more reliable with a month’s break, with this in mind?

A. Peterson

My progesterone keeps dropping but my HCG keeps going up. My doctor has me on 200 mg of progesterone and now is moving me to 400mg of progesterone and will draw again in another week. Should I be concerned?

Round 1 of blood work :
HCG: 220
Progesterone: 8.8

Round 2:
HCG: 923

Round 3:
HCG: 4278
Progesterone: 5.8

reply
Sydney Wasko

Officially have a second failed cycle under our belt.

Two different protocols, 60 total eggs, 3 total blastocysts, 2 aneuploid (several abnormalities) and 1 euploid baby girl affected with my genetic condition.

At 27 & 28 years old we are pursuing IVF for what we thought were genetic reasons only. All of our fertility tests show normal, lifestyle is healthy, but embryo quality is apparently atrocious.

Our fertility clinic kind of made me feel like there wasn’t much else they could do to help me because my “stims cycles look great on paper.”

reply
Dr. Geoffrey Sher

Hi Sydney,

You are clearly a rather high responder. In my opinion this means that you need a very individualized protocol for ovarian stimulation.

The importance of the IVF stimulation protocol on egg/embryo quality cannot be overstated. This factor seems often to be overlooked or discounted by t IVF practitioners who use a “one-size-fits-all” approach to ovarian stimulation. My experience is that the use of individualized/customized COS protocols can greatly improve IVF outcome. While no one can influence underlying genetics or turn back the clock on a woman’s age, any competent IVF specialist should be able to tailor the protocol for COS to meet the individual needs of the patient.
Gonadotropins (LH and FSH), whether produced by the pituitary gland or administered by way of fertility drugs, have different “targeted” sites of action in the ovary. FSH targets cells that line the inner wall of the follicle (granulosa cells) and also form the cumulus cells that bind the egg to the inner surface of the follicle. Granulosa cells are responsible for estrogen production.
LH, on the other hand, targets the ovarian connective tissue (stroma/theca) that surrounds ovarian follicles resulting in the production of male hormones such as testosterone (predominantly), androstenedione and DHEA. These androgens are then transported to the granulosa cells of the adjacent follicles in a “bucket brigade fashion”. There FSH converts testosterone to estradiol, causing granulosa cells to multiply (proliferate) and produce estradiol, follicles to grows and eggs to develop (ovogenesis) It follows that ovarian androgens (mainly testosterone) is absolutely indispensable to follicle/ egg growth and development.
However, the emphasis is on a “normal” amount of testosterone. Over-exposure of the follicle to testosterone can in my opinion, compromise egg development and lead to an increased likelihood of chromosomal irregularities (aneuploid) following LH/hCG-induced egg maturational division (meiosis) and compromise embryo “competency/quality.
Ovarian androgens can also reach the uterine lining where they sometimes will compromise estrogen receptor -induced endometrial growth and development.
A significant percentage of older women and those who have diminished ovarian reserve (DOR) have increased LH activity is increased. Such women either over-produce LH and/or the LH produced is far more biologically active. Chronically increased LH activity leads to overgrowth of ovarian connective tissue (stroma/theca). This condition, which is often referred to as Stromal Hyperplasia or hyperthecosis can result in excessive ovarian androgen/testosterone production and poorer egg-embryo quality/competency, Similarly, women with polycystic ovarian syndrome (PCOS), also characteristically have Stromal hyperplasia/hyperthecosis due to chronically increased LH activity. Thus they too often manifest with increased ovarian androgen production. It is therefore not surprising that “poor egg/embryo quality” is often also a feature of PCOS.
In my opinion, the over-administration of LH-containing menotropins such as Menopur, [which is comprised of roughly equal amount of FSH and hCG ,which acts similar to LH)], to older women, women with DOR and those who have PCOS can also lead to reduced egg/embryo competency . Similarly, drugs such as clomiphene or Letrozole that cause the pituitary gland to release excessive amounts of LH, are also potentially harmful to egg development and in my opinion, are best omitted from IVF COS protocols. This is especially the case when it comes to older women and those with DOR, who in my opinion should preferably be stimulated using FSH-dominant products such as Follistim, Puregon, Fostimon and Gonal-F.
Gonadotropin releasing hormone agonists (GnRHa): GnRHa such as Lupron, Buserelin, Superfact, Gonopeptyl etc. are often used to launch ovarian stimulation cycles. They act by causing an initial outpouring followed by a depletion of pituitary gonadotropins. This results in LH levels falling to low concentrations, within 4-7 days, thereby establishing a relatively “LH-free environment”. When GnRHa are administered for about 7 days prior to initiating gonadotropin stimulation (“long” pituitary down-regulation”), the LH depletion that will exist when COS is initiated, will usually be protective of subsequent egg development. In contrast, when the GnRHa administration commences along with the initiation of gonadotropin therapy, there will be a resultant immediate surge in the release of pituitary LH with the potential to increase ovarian testosterone to egg-compromising levels , from the outset of COS. This, in my opinion could be particularly harmful when undertaken in older women and those who have DOR.
GnRH-antagonists such as Ganirelix, Cetrotide and Orgalutron, on the other hand, act very rapidly (within hours) to block pituitary LH release. The purpose in using GnRH antagonists is to prevent the release of LH during COS. In contrast, the LH-lowering effect of GnRH agonists develops over a number of days.
GnRH antagonists are traditionally given, starting after 5th -7th day of gonadotropin stimulation. However, when this is done in older women and those (regardless of age) who have DOR, LH-suppression might be reached too late to prevent the deleterious effect of excessive ovarian androgen production on egg development in the early stage of ovarian stimulation. This is why, it is my preference to administer GnRH-antagonists, starting at the initiation of gonadotropin administration.
My preferred Protocols for Controlled Ovarian Stimulation (COS):
1. “Long” GnRHa (Lupron/Buserelin/Superfact/Gonopeptyl) Pituitary Down-regulation Protocol: The most commonly prescribed protocol for GnRHa/gonadotropin administration is the so-called “long protocol”. Here, GnRHa is given, starting a week or so prior to menstruation. This results in an initial rise in FSH and LH , which is rapidly followed by a precipitous fall to near zero. It is followed by a withdrawal bleed (menstruation), whereupon gonadotropin treatment should commence, while daily Lupron injections continue, to ensure a “low LH” environment. A modification to the “long protocol” which I prefer prescribing for older women and in cases of DOR, is the Agonist/Antagonist Conversion Protocol (A/ACP) where, upon the onset of a GnRHa-induced bleed, the agonist is supplanted by an antagonist (Ganirelix/Cetrotide/Orgalutron) and this is continued until the hCG trigger. In many such cases I often supplement with human growth hormone (HGH) in such cases in an attempt to enhance egg mitochondrial activity and so enhance egg development. This approach is often augmented with preimplantation genetic screening (PGS) of all embryos that reach the expanded blastocyst stage of development by day 5-6 post-fertilization. I also commonly recommend blastocyst banking to many such patients.
2. Short (“Flare”) GnRHa Protocol: Another GnRHa usage for COS is the so called “(micro) flare protocol”. This involves initiating gonadotropin therapy commensurate with initiation of gonadotropin administration. The supposed objective is to deliberately allow Lupron to elicit an initial surge (“flare”) in pituitary FSH release in order to augment FSH administration by increased FSH production. Unfortunately, this “spring board effect” constitutes “a double-edged sword”. While it indeed increases the release of FSH, it at the same time causes a surge in LH release. The latter can evoke excessive ovarian stromal/thecal androgen production which could potentially compromise egg quality, especially when it comes to older women and women with DOR. I am of the opinion that by evoking an exaggerated ovarian androgen response, such “(micro) flare protocols” can harm egg/embryo quality and reduce IVF success rates, especially when it comes to COS in older women, and in women with diminished ovarian reserve. Accordingly, I do not prescribe such protocols to my IVF patients.
3. Estrogen Priming – This is the approach I sometimes prescribe for my patients who have virtually depleted ovarian reserve , as determined by very low blood anti-Mullerian hormone AMH levels (<0.2ng/ml or 2 pmol/L) and are thus likely to be very “poor responders”. It involves a modified A/ACP. We start with estrogen skin patches applied every 2nd day (or with the BCP) for 10 days or longer, overlap it for 3 days with a GnRHa whereupon the estrogen priming is stopped. Th GnRHa is continued until the onset of menstruation (usually 5-7 days later) to cause pituitary LH, down-regulation. Upon menstruation and confirmation by ultrasound and measurement of blood estradiol levels that adequate ovarian suppression has been achieved, The patient is given twice-weekly injections of estradiol valerate (Delestrogen) for a period of 7-8 days whereupon COS is initiated using a relatively high dosage FSH-(Follistim, Fostimon, Puregon or Gonal F), which is continued along with daily administration of GnRH antagonist until the “hCG “trigger.” This approach is often augmented with HGH administration throughout the process of COS and by preimplantation genetic screening (PGS) of all embryos that reach the expanded blastocyst stage of development by day 5-6 post-fertilization. I also commonly recommend blastocyst banking to many such patients.
Estrogen Priming has succeeded in significantly enhancing ovarian response to gonadotropins in many of otherwise very poor responders.
Triggering egg Maturation prior to egg Retrieval: hCG versus GnRHa
With ovulation induction using fertility drugs, the administration of 10,000U hCGu (Pregnyl; Profasi, Novarel) or 500mcg hCGr (Ovidrel/Ovitrel) “trigger”) sends the eggs (into maturational division (meiosis). This process is designed to halve the chromosome number, resulting in mature eggs (M2) that will have 23 chromosomes rather that the 46 chromosomes they had prior to the “trigger”. Such a chromosomally numerically normal (euploid), mature (MII) eggs, upon being fertilized will (hopefully) propagate euploid embryos that have 46 chromosomes and will be “: competent” to propagate viable pregnancies. In my opinion, the key is to always “trigger” with no less than 10,000U of hCGu or 500mcg hCGr (Ovidrel/Ovitrel). Any lesser dosage often will reduce the efficiency of meiosis and increase the risk of the eggs being aneuploid. I personally do not use the agonist (Lupron) “trigger”, unless it is combined with (low dosage) hCG. The supposed reason for using the agonist, (Lupron) “trigger” is that by inducing meiosis through compelling a surge in the release of LH by the pituitary gland, the risk it reduces the risk of OHSS. This may be true, but it comes at the expense of egg quality because the extent of the induced LH surge varies and if too little LH is released, meiosis can be compromised, thereby increasing the likelihood of aneuploid and immature (MI) eggs. And there are other better approaches to preventing OHSS (e.g. “prolonged coasting”), in my opinion.
Use of the Birth Control Pill (BCP) to launch IVF-COS.
In natural (unstimulated) as well as in cycles stimulated with fertility drugs, the ability of follicles to properly respond to FSH stimulation is dependent on their having developed FSH-responsive receptors. Pre-antral follicles (PAF) do not have such primed FSH receptors and thus cannot respond properly to FSH stimulation with gonadotropins. The acquisition of FSH receptor responsivity requires that the pre-antral follicles be exposed to FSH, for a number of days (5-7) during which time they attain “FSH-responsivity” and are now known as antral follicles (AF). These AF’s are now able to respond properly to stimulation with administered FSH-gonadotropins. In regular menstrual cycles, the rising FSH output from the pituitary gland insures that PAFs convert tor AF’s. The BCP (as well as prolonged administration of estrogen/progesterone) suppresses FSH. This suppression needs to be countered by artificially causing blood FSH levels to rise in order to cause PAF to AF conversion prior to COS commencing, otherwise pre-antral-to –antral follicle conversion will not take place in an orderly fashion, the duration of ovarian stimulation will be prolonged and both follicle and egg development may be compromised. GnRH agonists cause an immediate surge in release of FSH by the pituitary gland thus causing conversion from PAF to SAF. This is why women who take a BCP to launch a cycle of COS need to have an overlap of the BCP with an agonist. By overlapping the BCP with an agonist for a few days prior to menstruation the early recruited follicles are able to complete their developmental drive to the AF stage and as such, be ready to respond appropriately to optimal ovarian stimulation. Using this approach, the timing of the initiation of the IVF treatment cycle can readily and safely be regulated and controlled by varying the length of time that the woman is on the BCP.
Since optimizing follicular response to COS requires that prior to stimulation with gonadotropins, FSH-induced conversion from PAF to AF’s first be completed and the BCP suppresses FSH, it follows when it comes to women launching COS coming off a BCP something needs to be done to cause a rise in FSH for 5-7 days prior to menstruation heralding the cycle of CO S. This is where overlapping the BCP with a GnRHa comes in. The agonist causes FSH to be released by the pituitary gland and if overlapped with the BCP for several days and this will (within 2-5 days) facilitate PAF to AF conversion…. in time to start COS with the onset of menstruation. Initiating ovarian stimulation in women taking a BCP, without doing this is suboptimal.
I strongly recommend that you visit www.SherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.
• The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
• Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
• The Fundamental Requirements For Achieving Optimal IVF Success
• Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
• Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
• The “Biological Clock” and how it should Influence the Selection and Design of Ovarian Stimulation Protocols for IVF.
• A Rational Basis for selecting Controlled Ovarian Stimulation (COS) protocols in women with Diminished Ovarian Reserve (DOR)
• Diagnosing and Treating Infertility due to Diminished Ovarian Reserve (DOR)
• Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
• Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
• Optimizing Response to Ovarian Stimulation in Women with Compromised Ovarian Response to Ovarian Stimulation: A Personal Approach.
• Egg Maturation in IVF: How Egg “Immaturity”, “Post-maturity” and “Dysmaturity” Influence IVF Outcome:
• Commonly Asked Question in IVF: “Why Did so Few of my Eggs Fertilize and, so Many Fail to Reach Blastocyst?”
• Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
• The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
• Staggered IVF
• Staggered IVF with PGS- Selection of “Competent” Embryos Greatly Enhances the Utility & Efficiency of IVF.
• Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
• Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation
• Preimplantation Genetic Testing (PGS) in IVF: It should be Used Selectively and NOT be Routine.
• IVF: Selecting the Best Quality Embryos to Transfer
• Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
• PGS in IVF: Are Some Chromosomally abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
• PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
• IVF outcome: How Does Advancing Age and Diminished Ovarian Reserve (DOR) Affect Egg/Embryo “Competency” and How Should the Problem be addressed.

______________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
Jen

Hi Dr. Sher
Is a heartbeat of 125 at 7w1d ok? My doctor did not seem concerned but it seems below the normal ranges I’m seeing for 7w. Thanks

reply
Lara

I am 42years old, I got pregnant at 40 which ended up on pprom at 18weeks. I have had 2 chemical and 1 early miscarriage at 5weeks as well. I decided to do ivf. My body responded to the stims very quickly and we ended up doing a mini stims. We got 7 eggs but 5fertilized using ICSI. None made it to blasts.
We did a 2nd round, 10 follicle 9 eggs matured, 6 fertilized but only 2 blasts. We froze them. We are planning to do a 3rd cycle. The doctor mentioned doing estrace priming but then said I am getting a good number of eggs and I don’t need it. I am not sure I agree. He didn’t suggest any other protocol. What are common protocols ?
What would you recommend that could possibly increase my chances, especially in protocol? We think quality is my issue. I am also looking into DHEA? Worried since its a hormone. I am taking L-arginine and Great quality ubiquinol, vitamins D,E and NAC(N-acetyl cysteine).

reply
Dr. Geoffrey Sher

In my opinion, at age 42y, you need an individualized protocol (see below). I agree with your RE that Estrogen priming is probably going to be redundant since you have reasonable ovarian reserve and, I would NOT use DHEA.

It is primarily the egg (rather than the sperm) that determines the chromosomal integrity (karyotype) of the embryo, the most important determinant of egg/embryo competency”. A “competent” egg is therefore one that has a normal karyotype and has the best potential to propagate a “competent” embryo. In turn, a “competent embryo is one that possesses the highest potential to implant and develop into a normal, healthy, baby.
When it comes to reproductive performance, humans are the least efficient of all mammals. Even in young women under 35y, at best only 1 out of 2 eggs are chromosomally numerically normal (euploid). The remained have an irregular number of chromosomes (aneuploid) and are thus “incompetent”. The incidence of egg aneuploidy increases with age such by age 39 years, 3 in 4 are competent, and by the mid-forties, less 8 to 9 out of 10 are aneuploid. The fertilization of an aneuploid egg will inevitably lead to embryo aneuploid and an aneuploid embryo cannot propagate a normal pregnancy
Within hours of the spontaneous pre-ovulatory luteinizing hormone (LH) surge, and also following administration of the human chorionic gonadotropin (hCG) “trigger” shot (given to induce ovulation after ovarian stimulation with fertility drugs), the egg embarks on a rapid maturational process that involves halving of its 46 chromosomes to 23. During this process, (known as meiosis) 23 chromosomes are retained within the nucleus of the egg while the remaining (now redundant) 23are expelled, enveloped by a thin membrane. This small structure comes to lie immediately below the “shell” of the egg (the zona pellucida) and is known as the 1st polar body or PB-1. The spermatozoon, in the process of its maturation also undergoes meiosis at which time it too reduces its chromosomes by half. Thus in the process of fertilization the sperm divides into two separate functional gametes, each containing 23 chromosomes such that with subsequent fertilization, the 23 chromosomes in the egg, fuse with the 23 chromosomes of the mature sperm resulting in the development of an embryo that has 46 chromosomes (the normal human genome) comprising a combination of the genetic material from both partners. For the embryo to have exactly 46 chromosomes (the euploid number), both the mature egg and mature spermatozoon must contain exactly 23 chromosomes. Only euploid embryos are “competent” (capable of developing into healthy babies). Those with an irregular number of chromosomes (aneuploid embryos) are “incompetent” and are incapable of developing into healthy babies. While embryo “incompetence” can result from either egg or sperm aneuploidy, it usually stems from egg aneuploidy. However, in cases of moderate or severe male factor infertility, the sperm’s contribution to aneuploidy of the embryo increases significantly.
While embryo ploidy (numerical chromosomal integrity) is not the only determinant of its “competency, it is by far the most important and in fact is rate-limiting factor in human reproduction. It is causal in most cases of “failed implantation” which in turn is responsible for most cases of failed IVF. It causes early miscarriages and is responsible for many chromosomal birth defects such as X-monosomy and Down’s syndrome. . In most cases, embryos that develop too slowly as well as those that grow too fast (i.e. ones that by day 3 post-fertilization comprise fewer than 6 cells or more than 9 cells) and/or embryos that contain a large amount of cell debris or “fragments” are usually aneuploid and are thus “incompetent”. Additionally, embryos that fail to survive in culture to the blastocyst stage are also almost always aneuploid/”incompetent”. At a certain point in the later stage of a woman’s reproductive career, the number of remaining eggs in her ovaries falls below a certain threshold, upon which she is unable to respond optimally to fertility drugs. Often times this is signaled by a rising day 3 blood follicle stimulating hormone (FSH) level. Such women with diminishing ovarian reserve produce fewer eggs in response to ovarian stimulation. While diminished ovarian reserve is most commonly encountered in women over 40 years of age it can and indeed sometimes does occur in much younger women. A few important (but often overlooked concepts should be considered in this regard: 1. Age: It is advancing chronologic age and NOT declining ovarian reserve (as evidenced by abnormal blood AMH or FSH that results in an increased incidence of egg/embryo “incompetence” due to aneuploidy 2. DOR: The ovaries and developing eggs of women with diminished ovarian reserve (regardless of age) are highly susceptible to the adverse effect of excessive Luteinizing Hormone (LH)-induced overproduction of male hormones (mainly testosterone). A little testosterone produced by the ovary promotes normal follicle growth and orderly egg development but too much testosterone has the opposite effect. That is why (especially in women with diminished ovarian reserve who often have high LH and increased ovarian testosterone production , the use of ovarian stimulation protocols that fail to down-regulate LH production prior to initiating stimulation with gonadotropins, often prejudices egg/embryo quality and IVF outcome. Simply stated, while age is certainly the most important factor in determining the incidence of egg/embryo aneuploidy, women with diminished ovarian reserve (regardless of their age), unless they receive customized/individualized protocols of ovarian stimulation are less likely to propagate euploid (competent) eggs/embryos.
Selection of the ideal protocol for controlled ovarian stimulation: While NOTHING can be done to lower the incidence of age related aneuploidy, it is indeed possible to avoid a further increase in egg/embryo aneuploidy by individualizing the protocols of ovarian stimulation used.
• My preferred protocols for women who have relatively normal ovarian reserve:
a) The conventional long pituitary down regulation protocol: BCP are commenced early in the cycle and continued for at least 10 days. Starting 3 days before the BCP is to be discontinued, it is overlapped with an agonist such as Lupron 10U daily for three (3) days and continued until menstruation begins (which should ensue within 5-7 days of stopping the BCP). At that point an US examination is done along with a baseline measurement of blood estradiol to exclude a functional ovarian cyst. Simultaneously, the Lupron dosage is reduced to 5U daily and an FSH-dominant gonadotropin such as Follistim, Puregon or Gonal-f daily is commenced for 2 days. On the 3rd day the gonadotropin dosage is reduced and a small amount of daily menotropin (Menopur 75U daily) is added. Daily ultrasound and blood estradiol measurements are done starting on the 7th or 8th day of gonadotropin administration and continued until daily ultrasound follicle assessments indicate that most follicles have fully developed. At this point egg maturation is “triggered” using an intramuscular injection of 10,000U hCG. And an egg retrieval is scheduled for 36h later.
b) The agonist/antagonist conversion protocol (A/ACOP): This is essentially the same as the conventional long down regulation protocol (as above), except that with the onset of post-BCP menstruation, the agonist is supplanted by daily administration of a GnRH antagonist (e.g. Ganirelix, Cetrotide or Orgalutron) at a dosage of 125mcg daily until the day of the hCG trigger
• My preferred protocol for women who have relatively diminished ovarian reserve (DOR):
When it comes to women who have DOR I favor the use of the A/ACP, adding supplementary human growth hormone (HGH). In some cases where the DOR is regarded as severe, I also augment the process with estrogen priming, preferring twice weekly intramuscular administration of estradiol valerate (Delestrogen), starting with the commencement of antagonist injection and continuing for 1 week before commencing gonadotropins and continued until the hCG “trigger. I further recommend that such women be offered access to preimplantation genetic screening (PGS) for4 embryo selection and in some cases, for embryo banking (stockpiling). This is followed in a later hormone replacement cycle with the selective transfer of up to two (2) PGS-normal, euploid blastocysts. In this way we are able to capitalize on whatever residual ovarian reserve and egg quality might still exist and thereby “make hay while the sun still shines” , significantly enhancing the opportunity to achieve a viable pregnancy
• The following Ovarian stimulation protocols are in my opinion best avoided in women with DOR:
a) Microdose agonist (e.g. Lupron) “flare” protocols
b) High doses of LH/hCG-containing fertility drugs (E.G. Menopur).
c) Protocols that incorporate supplementation with male hormones (e.g. testosterone)
d) Supplementation with DHEA
e) Clomiphene citrate or Letrozole which cause an elevation in LH and thus increase ovarian male hormone (testosterone and androstenedione output.
f) “Triggering” egg maturation using too low a dosage of hCG (e.g. 5,000U rather than 10,000U) or Ovidrel e.g. 250mcg of Ovidrel rather than 500mcg)
g) “Triggering” women who have large numbers of follicles using an agonist such as Lupron, Superfact or Buserelin.
• Preimplantation Genetic Screening (PGS):
The introduction of preimplantation genetic screening (PGS) for the first time permits identification of all the chromosomes in the egg and embryo such that we can now far better identify “competent” (euploid) embryos for selective transfer to the uterus. This vastly improves the efficiency and success of the IVF process. This additional tool has better equipped us to manage cases with DOR. In my opinion, next generation gene sequencing (NGS), currently represents the most reliable method for performing PGS
Please visit my Blog on this very site, http://www.DrGeoffreySherIVF.com, find the “search bar” and type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly

• Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
• IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
• The Fundamental Requirements For Achieving Optimal IVF Success
• Ovarian Stimulation for IVF using GnRH Antagonists: Comparing the Agonist/Antagonist Conversion Protocol.(A/ACP) With the “Conventional” Antagonist Approach
• Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
• The “Biological Clock” and how it should Influence the Selection and Design of Ovarian Stimulation Protocols for IVF.
• A Rational Basis for selecting Controlled Ovarian Stimulation (COS) protocols in women with Diminished Ovarian Reserve (DOR)
• Diagnosing and Treating Infertility due to Diminished Ovarian Reserve (DOR)
• Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
• Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
• The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
• Blastocyst Embryo Transfers Should be the Standard of Care in IVF
• Frozen Embryo Transfer (FET) versus “Fresh” ET: How to Make the Decision
• Frozen Embryo Transfer (FET): A Rational Approach to Hormonal Preparation and How new Methodology is Impacting IVF.
• Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
• Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation.
• Preimplantation Genetic Testing (PGS) in IVF: It Should be Used Selectively and NOT be Routine.
• Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
• PGS in IVF: Are Some Chromosomally Abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
• PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
• Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
• Traveling for IVF from Out of State/Country–
• A personalized, stepwise approach to IVF
• How Many Embryos should be transferred: A Critical Decision in IVF.
• The Role of Nutritional Supplements in Preparing for IVF
• Premature Luteinization (“the premature LH surge): Why it happens and how it can be prevented.
• IVF Egg Donation: A Comprehensive Overview

______________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
Erika Patricia

I’m so confused and hope you can share your opinion on what may be happening! Four years ago, I had a ruptured ectopic with no prior symptoms. I currently have only my right fallopian tube. I am now pregnant at about 5-6 weeks (guessing). Gestational sac with yolk sac, no fetal pole yet. They have ruled out an ectopic completely at this stage (several tests done to confirm no ectopic). Problem is, my HCG levels are not doubling which is showing concern that is may not be a viable pregnancy, but they are rising.
2326 to 2856, to 2932, to 3317. More bloodwork to come back tomorrow.

Do you think this will be a miscarriage?

reply
Dr. Geoffrey Sher

The levels often don’t double every 48h when the get that high. I suggest waiting 1 week and doing an US for a definitive answer.

I know it is not easy to be patient under these circumstances, but that is what is needed here!

Good luck and G-d bless!

Geoff Sher

reply
Craig

Hi Doctor

getting a little worried about the results.

9dp5dt HCG was 20

12dpt it was 68

15dpt its now 128

wondering if you think this is still viable

reply
Mary

Hi doctor

Wanted t know your thoughts on my betas ? Getting a little worried

9dp5dt HCG 20

12dp5t hcg 68
15dp5dt hcg 128

reply
Dr. Geoffrey Sher

The rise in hCG is rather slow. I must confess, this is a little alarming. It could be a failing implantation!

Sorry!

Geoff Sher

reply
Natalie

Hi Dr Sher, I am wondering if you can provide me with some advice. I just had a medicated FET cycle cancelled as my lining shrunk. It went from 4.6mm on CD9 to 6.6mm on CD14, to 5.4mm on CD17. Is it likely that my body doesn’t like synthetic oestrogen?

I know that my lining isn’t great in a natural cycle – around 6-7mm on day of my LH surge.

What would you recommend for a future natural FET to try and improve my lining? In an IVF cycle my lining is generally 8-9mm on day of trigger so it does respond well to high levels of natural oestrogen.

Many thanks in advance
Natalie

reply
Dr. Geoffrey Sher

Frankly, I am not a fan of natural cycle FET’s. I prefer hormone medicated cycles because it broadens the window of implantation, is more manageable and predictable.

It was as far back as 1989, when I first published a study that examined the correlation between the thickness of a woman’s uterine lining (the endometrium), and the subsequent successful implantation of embryos in IVF patients. This study revealed that when the uterine lining measured <8mm in thickness by the day of the “hCG trigger” (in fresh IVF cycles), or at the time of initiating progesterone therapy (in embryo recipient cycles, e.g. frozen embryo transfers-FET, egg donation-IVF etc.) , pregnancy and birth rates were substantially improved. Currently, it is my opinion, that an ideal estrogen-promoted endometrial lining should ideally measure at least 9mm in thickness and that an endometrial lining measuring 8-9mm is “intermediate”. An estrogenic lining of <8mm is in most cases unlikely to yield a viable pregnancy.

A “poor” uterine lining is usually the result of the innermost layer of endometrium (the basal or germinal endometrium from which endometrium grows) ) not being able to respond to estrogen by propagating an outer, “functional” layer thick enough to support optimal embryo implantation and development of a healthy placenta (placentation). The “functional” layer ultimately comprises 2/3 of the full endometrial thickness and is the layer that sheds with menstruation in the event that no pregnancy occurs.

The main causes of a “poor” uterine lining are:

1. Damage to the basal endometrium as a result of:
a. Inflammation of the endometrium (endometritis) most commonly resulting from infected products left over following abortion, miscarriage or birth
b. Surgical trauma due to traumatic uterine scraping, (i.e. due to an over-aggressive D & C)
2. Insensitivity of the basal endometrium to estrogen due to:
a. Prolonged , over-use/misuse of clomiphene citrate
b. Prenatal exposure to diethylstilbestrol (DES). This is a drug that was given to pregnant women in the 1960’s to help prevent miscarriage
3. Over-exposure of the uterine lining to ovarian male hormones (mainly testosterone): Older women, women with diminished ovarian reserve (poor responders) and women with polycystic ovarian syndrome -PCOS tend to have raised LH biological activity.. This causes the connective tissue in the ovary (stroma/theca) to overproduce testosterone. The effect can be further exaggerated when certain methods for ovarian stimulation such as agonist (Lupron/Buserelin) “flare” protocols and high dosages of menotropins such as Menopur are used in such cases.
4. Reduced blood flow to the basal endometrium:
Examples include;
a. Multiple uterine fibroids - especially when these are present under the endometrium (submucosal)
b. Uterine adenomyosis (excessive, abnormal invasion of the uterine muscle by endometrial glands).

“The Viagra Connection”

Eighteen years ago years ago, after reporting on the benefit of vaginal Sildenafil (Viagra) for to women who had implantation dysfunction due to thin endometrial linings I was proud to announce the birth of the world’s first “Viagra baby.” Since the introduction of this form of treatment, thousands of women with thin uterine linings have been reported treated and many have gone on to have babies after repeated prior IVF failure.

For those of you who aren’t familiar with the use of Viagra in IVF, allow me to provide some context. It was in the 90’s that Sildenafil (brand named Viagra) started gaining popularity as a treatment for erectile dysfunction. The mechanism by which it acted was through increasing penile blood flow through increasing nitric oxide activity. This prompted me to investigate whether Viagra administered vaginally, might similarly improve uterine blood flow and in the process cause more estrogen to be delivered to the basal endometrium and thereby increase endometrial thickening. We found that when Viagra was administered vaginally it did just that! However oral administration was without any significant benefit in this regard. We enlisted the services of a compound pharmacy to produce vaginal Viagra suppositories. Initially, four (4) women with chronic histories of poor endometrial development and failure to conceive following several advanced fertility treatments were evaluated for a period of 4-6 weeks and then underwent IVF with concomitant Viagra therapy. Viagra suppositories were administered four times daily for 8-11 days and were discontinued 5-7 days prior to embryo transfer in all cases.

Our findings clearly demonstrated that vaginal Viagra produced a rapid and profound improvement in uterine blood flow and that was followed by enhanced endometrial development in all four cases. Three (3) of the four women subsequently conceived. I expanded the trial in 2002 and became the first to report on the administration of vaginal Viagra to 105 women with repeated IVF failure due to persistently thin endometrial linings. All of the women had experienced at least two (2) prior IVF failures attributed to intractably thin uterine linings. About 70% of these women responded to treatment with Viagra suppositories with a marked improvement in endometrial thickness. Forty five percent (45%) achieved live births following a single cycle of IVF treatment with Viagra The miscarriage rate was 9%. None of the women who had failed to show an improvement in endometrial thickness following Viagra treatment achieved viable pregnancies.

Following vaginal administration, Viagra is rapidly absorbed and quickly reaches the uterine blood system in high concentrations. Thereupon it dilutes out as it is absorbed into the systemic circulation. This probably explains why treatment is virtually devoid of systemic side effects

It is important to recognize that Viagra will NOT be effective in improving endometrial thickness in all cases. In fact, about 30%-40% of women treated fail to show any improvement. This is because in certain cases of thin uterine linings, the basal endometrium will have been permanently damaged and left unresponsive to estrogen. This happens in cases of severe endometrial damage due mainly to post-pregnancy endometritis (inflammation), chronic granulomatous inflammation due to uterine tuberculosis (hardly ever seen in the United States) and following extensive surgical injury to the basal endometrium (as sometimes occurs following over-zealous D&C’s).

Combining vaginal Viagra Therapy with oral Terbutaline;
In my practice I sometimes recommend combining Viagra administration with 5mg of oral terbutaline. The Viagra relaxes the muscle walls of uterine spiral arteries that feed the basal (germinal) layer of the endometrium while Terbutaline, relaxes the uterine muscle through which these spiral arteries pass. The combination of these two medications interacts synergistically to maximally enhance blood flow through the uterus, thereby improving estrogen delivery to the endometrial lining. The only drawback in using Terbutaline is that some women experience agitation, tremors and palpitations. In such cases the terbutaline should be discontinued. Terbutaline should also not be used women who have cardiac disease or in those who have an irregular heartbeat.

About 75% of women with thin uterine linings see a positive response to treatment within 2-3 days. The ones that do not respond well to this treatment are those who have severely damaged inner (basal/germinal) endometrial linings, such that no improvement in uterine blood flow can coax an improved response. Such cases are most commonly the result of prior pregnancy-related endometrial inflammation (endometritis) that sometimes occurs post abortally or following infected vaginal and/or cesarean delivery.

Viagra therapy has proven to be a god send to thousands of woman who because of a thin uterine lining would otherwise never have been able to successfully complete the journey “from infertility to family”.

___________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

Patients are encouraged to share the information I provide, with their treating Physicians and/or to avail themselves of my personal hands-on services, provided through batched IVF cycles that I conduct every 3 months at Los Angeles IVF (LAIVF) Clinic, Century City, Los Angeles, CA.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
natalie

Thank you for your reply.

I had a miscarriage in 2019 and had a D&C. Of the above reasons you list for having a thin lining, I think this is the more likely one. Ever since my periods have been a lot shorter, lasting only 2 days, as opposed to 4 days before my miscarriage. Is there anything I can do about this or any tests I should be doing? A hysteroscopy? Testing for infections/the microbiome?

Do you know the reason why my lining would shrink in a cycle?

I have seen your research on viagra before but I am in the UK and we don’t have access to viagra pessaries, only oral viagra. I am also not able to get a prescription to send to the pharmacy you recommend in California as I do not know any doctors in the US.

As I respond to the extra oestrogen produced in a natural cycle, would one option be to have a very mild stimulation cycle, controlled with anti-gonadotropins to prevent premature ovulation and then trigger with hcg before starting on progesterone ready for the transfer? This is therefore part controlled and I know my lining responds to natural oestrogen production.

Is it possible to use oral viagra vaginally considering I am not in the US and can’t get the pessaries?

Or do you have any other suggestions on what I can do for a transfer?

Many thanks in advance.
Natalie

reply
Dr. Geoffrey Sher

Oral Viagra is useless and inseting the viagra pill in the vagina is not much better.

I really think we should talk. Call my assistant Patti at 702-533-2691 and set up an online consultation.

Good luck!

Geoff Sher

reply
Tamsin

Hi. I’ve just gone through my first round of ivf at a uk clinic and wasn’t successful. I am 40 years old and have an amh of 4.2. I had prostap followed by 14 days of ovaleap 375 IU daily (6000 IU in total). My trigger was ovitreille at day 14 an I took this at 10.45pm as instructed and was due egg collection at 10.45am 36hours later. At my final scan they said I had 6 good sized follicles some at 22mm and a few around 18/19mm. My egg collection was an hour and 10 minutes late (11.55am) due to complications with the previous patient and the Dr said he was disappointed that some of the follicles were empty and they only collected 2 eggs. After doing a blood test they think I might have ovulated early. 2 eggs fertilised with both reaching day 3 and one reached to day 5. They kept it until day 6 as growth was slow and then sadly it didn’t survive. I want another opinion as to whether the late egg collection could have caused me to have ovulated early and why I only got 2 eggs? Thanks

reply
Dr. Geoffrey Sher

I do not believe that the 1.5h delay explains your so called “empty follicles”.

There is in my opinion no such entity as “Empty Follicle Syndrome”. All follicles contain eggs. Failure to access those eggs at ER can often be a result of the protocol used for controlled ovarian stimulation (COS.

Not infrequently, when following vigorous and often repeated flushing of follicles at egg retrieval they fail to yield eggs, it is ascribed to the “empty follicle syndrome”. This is a gross misnomer because all follicles contain eggs so it did not happen because the follicles were “empty”. Most likely it was because they would/could not yield the eggs they harbored. This situation is most commonly seen in older women, women who have severely diminished ovarian reserve and in women with polycystic ovarian syndrome and in my opinion, it often preventable when an optimal, individualized and strategic protocol for controlled ovarian stimulation (COS) is employed and the correct timing and dosage is applied to the “hCG trigger” shot.

Normally, following optimal ovarian stimulation, the hCG “trigger shot” is given for the purpose of it triggering meiosis (reproductive division) that is intended to halve the number of chromosomes from 46 to 23 within 32-36 hours. The hCG “trigger also enables the egg to signal the “cumulus cells” that bind it firmly to the inner wall of the follicle (through enzymatic activity), to loosen or disperse such that the egg can detach and readily be captured at egg retrieval (ER). Ordinarily, normal eggs (and even those with only one or two chromosomal irregularities) will readily detach and be captured with the very first attempt to empty of a follicle. Eggs that have several chromosomal numerical abnormalities (i.e., are “complex aneuploid”) are often unable to facilitate this process. This explains why when the egg is complex aneuploid its follicle will not yield an egg…and why, when it requires repeated flushing of a follicle to harvest an egg, it is highly suggestive of it being aneuploid and thus “incompetent” (i.e., incapable of subsequently propagating a normal embryo).

Older women, women with diminished ovarian reserve and those with polycystic ovarian syndrome, tend to have more biologically active LH in circulation. LH cause production of male hormone (androgens, predominantly testosterone, by ovarian connective tissue (stroma/theca). A little testosterone is needed for optimal follicle development and for FSH-induced oogenesis’ (egg development. Too much LH activity compromises the latter and eggs so affected, are far more likely to be aneuploid, following meiosis. Women with the above conditions have increased LH activity and are thus more likely to produce excessive ovarian testosterone. It follows that sustained, premature elevations in LH elevations or premature luteinization (often referred to as a “premature LH surge”) will prejudice egg development. Such compromised eggs are much more likely to end up being complex aneuploid following the administration of the “hCG trigger” leading to failed and the so called “empty follicle syndrome”

Since the developing eggs of women who have increased LH activity [older women, women with diminished ovarian reserve (DOR) and those with PCOS] are inordinately vulnerable to the effects of protracted exposure to LH-induced ovarian testosterone. Also, the administration of medications that provoke further pituitary LH release (e.g., clomiphene and Letrozole) and drugs that contain LH or hCG (e.g., Menopur; or protocols of ovarian stimulation the provoke increase exposure to the woman’s own pituitary LH (e.g., “flare-agonist protocols” and the use of “late pituitary blockade (antagonists) protocols can be prejudicial. The importance of individualizing COS protocol selection, precision with regard to the dosage and type of hCG trigger used and the timing of its administration in such cases, cannot be overstated. The ideal dosage of urinary-derived hCG (hCG-u) such as Novarel, Pregnyl and Profasi is 10,000U. When recombinant DNA-derived hCG(hCG-r) such as Ovidrel is used, the optimal dosage is 500mcg. A lower dosage of hCG can by compromising meiosis, increase the risk of egg aneuploidy and thus of IVF outcome.
I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.
• Implications of “Empty Follicle Syndrome and “Premature Luteinization”
• Premature Luteinization (“the premature LH surge): Why it happens and how it can be prevented.
• Fertility Preservation (FP) Through Freezing/Banking Human Eggs
• The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
• Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
• IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
• The Fundamental Requirements For Achieving Optimal IVF Success
• Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
• Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
• The “Biological Clock” and how it should Influence the Selection and Design of Ovarian Stimulation Protocols for IVF.
• A Rational Basis for selecting Controlled Ovarian Stimulation (COS) protocols in women with Diminished Ovarian Reserve (DOR)
• Diagnosing and Treating Infertility due to Diminished Ovarian Reserve (DOR)
• Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
• Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
• Optimizing Response to Ovarian Stimulation in Women with Compromised Ovarian Response to Ovarian Stimulation: A Personal Approach.
• Egg Maturation in IVF: How Egg “Immaturity”, “Post-maturity” and “Dysmaturity” Influence IVF Outcome:
• Commonly Asked Question in IVF: “Why Did so Few of my Eggs Fertilize and, so Many Fail to Reach Blastocyst?”
• Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
• The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
• Staggered IVF with PGS- Selection of “Competent” Embryos Greatly Enhances the Utility & Efficiency of IVF.
• Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
• Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation
• Preimplantation Genetic Testing (PGS) in IVF: It should be Used Selectively and NOT be Routine.
• IVF: Selecting the Best Quality Embryos to Transfer
• Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
• PGS in IVF: Are Some Chromosomally abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
• PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
• IVF outcome: How Does Advancing Age and Diminished Ovarian Reserve (DOR) Affect Egg/Embryo “Competency” and How Should the Problem be addressed.
• IVF: The first Choice for Infertile Women 40 to 43 Years of Age!
• IVF Egg Donation: A Comprehensive Overview

______________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
Dr. Geoffrey Sher

Looks good to me but if >1 embryo was transferred, it could be a multiple!

GS

reply
Wardah anas

My lmp is 27 july 2021 ac to lmo i shoul be 9 weeks today but gestational age shows 7 weeks and my hcg is 14000 no heart beat dr said its missed miscarriage, is it? Plz tell i am too much worried.

reply
Ashley

Hello, I had a faint positive home pregnancy test 4 days ago at 12dpo and went in for my first HCG two days later. I ovulated early, so my period is still not due for two days.
14dpo hcg 77 progesterone 125
16 Dpo hcg 70 prohesterone 91
I think falling almost certainly means a chemical pregnancy, but is there any hope if it’s only two tests.

reply
A. Peterson

Hello,

I am early on into pregnancy, were guessing I’m around 4 – 5 weeks. I went into the doctors to confirm the pregnancy and did a blood test. I got my blood work back and it shows my HCG at 217 and my progesterone at 8.8. Are these good levels?

reply
Dr. Geoffrey Sher

Repeat the hCG test in 2 days. If it doubles, you could be OK!

Good luck!

Geoff Sher

reply
A. Peterson

We redid the HCG test on Friday and I am now at 923. The doctor also put me on a progesterone supplement.

reply
Dakota

Hey Dr Sher!
Im currently 5 weeks 2 days pregnant.
On Sept 23 (4 weeks 2 days) hcg – 84.
On Sept 27 (4 weeks 6 days) hcg – 640.
Do you think these are rising okay, or too fast as it is >doubling. I am on progesterone suppositories, with some lower back aches / cramping over the last week with no bleeding..
I’ve had 2 miscarriages in the last 10 months so I am pretty terrified. Thanks!!

reply
Antra Patel

Hello
I am a 41 year old, slim ( BMI 18.5) and normal HbA1c = 5.4 for several years. I got pregnant naturally at age 38 ( miscarriage at week 11). I tried Femara for 4-5 cycles but no luck. HSG normal, no pcos or endometriosis that I am aware of.

I finally tried IVF due to my age. I got 11 eggs, 7 fertilized and I did 2 embryo transfer and no luck. I did an ERA test which showed I needed extra 1 day of progesterone so for the remainder of 2 embryo transfer, I got an extra Day of IM progesterone but no implantation.
At age 40, I did another IVF stimulation cycle and with ICSI only 4 eggs retrieved and none fertilized. I did 2 Doner Embryo transfer, no implantation.

I took a 3 months break and at age 41, my OB put me on Metformin 500 mg daily + Femara starting day # 4 and I naturally got pregnant the same cycle. I miscarried again at week 8, fetus measuring 6.5 weeks and no fetal heartbeat.

My ANA antibody screen is negative. I did a 3 hour Glucose Tolerance test with insulin levels:
Fasting: Glucose 86, Insulin 4.40
1 hour: Glucose 88, Insulin 40.5
2 hour: Glucose 87, Insulin 40.9
3 hour: Glucose 87, Insulin 31.5

My question is: am I showing signs of hyperinsulinemia? My insulin level stayed quite high at 2 hours & 3 hours despite glucose being normal. I would’ve expected my insulin levels to have dropped closer to baseline at 2& 3 hours.
I am waiting for the blood clotting results to come back. My DHEA -S level is 188.

Thank you

reply
Dr. Geoffrey Sher

I do not think you have hyperinsulinemia!

Perhaps we should talk. Consider calling my assisxtant Patti at 702-533-2691 to set up an online consultation with me.

Geoff Sher

Good luck!

Sher

reply
RN

Thank you for the reply. I tested negative today, day 30. And then I started menstruating, so seemingly the treatment did not work this time.
Just wondering if serum progesterone level does go as high as ~35 ng/mL in case of no pregnancy????
Appreciate the support you extend to everyone.

reply
Vicki

I am 5 weeks pregnant from an FET cycle and I’m doing a pill patch combination for estrogen, 1mg am & pm and transdermal patch changed every 2 days, as well as IM progesterone. On Tuesday I forgot to take my morning estrogen pill and then on Thursday I was supposed to have changed my patch on Wednesday night and forgot and wore it for a third day. All day Thursday I was having hot flashes I thought it was just pregnancy hormones and then about 11:30 at night it struck me like a bowl of lightning that I had forgotten to change my patch and when it’s in a half an hour of changing my patch The Hot flashes stopped. How severely will this affect pregnancy my hcgs have been good up until this point but I’m very concerned that I didn’t have enough estrogen support.

reply
Dr. Geoffrey Sher

I don’t think it will affect your pregnancy but you need to be more meticulous about taking your hormonal support!

Good luck!

Geoff Sher

reply
Ellie

Dear Doctor,
My IVF cycle got delayed because of elevated
progestron level before stimulation drugs. After two weeks on BCP and then lupron 10 units. In baseline blood work for start of IVF my progestron was elevated “7” so it shifted to next menses.
Could you please suggest , how this can be overcome.
Thank you!

reply
Dr. Geoffrey Sher

Respectfully, I do not think it is a big deal because it probably would have dropped when your period started.

Geoff Sher

reply
Lisa

I have secondary infertility due to recurrent miscarriage. I have had IVF and miscarried 3 x PGS tested embryos, two whilst on clexane. I then was found to have high NK cells so put on pred 10mg, fragmin 5000, aspirin 100mg on an artificial FET cycle. Embryo transferred yesterday and now experiencing heart palpitations so the clinic says I need to wean off the pred. Is there anything else I can take to suppress my immune system?

reply
Dr. Geoffrey Sher

When it comes to reproduction, humans are the poorest performers of all mammals. In fact we are so inefficient that up to 75% of fertilized eggs do not produce live births, and up to 30% of pregnancies end up being lost within 10 weeks of conception (in the first trimester). RPL is defined as two (2) or more failed pregnancies. Less than 5% of women will experience two (2) consecutive miscarriages, and only 1% experience three or more.
Pregnancy loss can be classified by the stage of pregnancy when the loss occurs:
• Early pregnancy loss (first trimester)
• Late pregnancy loss (after the first trimester)
• Occult “hidden” and not clinically recognized, (chemical) pregnancy loss (occurs prior to ultrasound confirmation of pregnancy)
• Early pregnancy losses usually occur sporadically (are not repetitive).

In more than 70% of cases the loss is due to embryo aneuploidy (where there are more or less than the normal quota of 46 chromosomes). Conversely, repeated losses (RPL), with isolated exceptions where the cause is structural (e.g., unbalanced translocations), are seldom attributable to numerical chromosomal abnormalities (aneuploidy). In fact, the vast majority of cases of RPL are attributable to non-chromosomal causes such as anatomical uterine abnormalities or Immunologic Implantation Dysfunction (IID).
Since most sporadic early pregnancy losses are induced by chromosomal factors and thus are non-repetitive, having had a single miscarriage the likelihood of a second one occurring is no greater than average. However, once having had two losses the chance of a third one occurring is double (35-40%) and after having had three losses the chance of a fourth miscarriage increases to about 60%. The reason for this is that the more miscarriages a woman has, the greater is the likelihood of this being due to a non-chromosomal (repetitive) cause such as IID. It follows that if numerical chromosomal analysis (karyotyping) of embryonic/fetal products derived from a miscarriage tests karyotypically normal, then by a process of elimination, there would be a strong likelihood of a miscarriage repeating in subsequent pregnancies and one would not have to wait for the disaster to recur before taking action. This is precisely why we strongly advocate that all miscarriage specimens be karyotyped.
There is however one caveat to be taken into consideration. That is that the laboratory performing the karyotyping might unwittingly be testing the mother’s cells rather than that of the conceptus. That is why it is not possible to confidently exclude aneuploidy in cases where karyotyping of products suggests a “chromosomally normal” (euploid) female.
Late pregnancy losses (occurring after completion of the 1st trimester/12th week) occur far less frequently (1%) than early pregnancy losses. They are most commonly due to anatomical abnormalities of the uterus and/or cervix. Weakness of the neck of the cervix rendering it able to act as an effective valve that retains the pregnancy (i.e., cervical incompetence) is in fact one of the commonest causes of late pregnancy loss. So also are developmental (congenital) abnormalities of the uterus (e.g., a uterine septum) and uterine fibroid tumors. In some cases intrauterine growth retardation, premature separation of the placenta (placental abruption), premature rupture of the membranes and premature labor can also causes of late pregnancy loss.
Much progress has been made in understanding the mechanisms involved in RPL. There are two broad categories:
1. Problems involving the uterine environment in which a normal embryo is prohibited from properly implanting and developing. Possible causes include:
• Inadequate thickening of the uterine lining
• Irregularity in the contour of the uterine cavity (polyps, fibroid tumors in the uterine wall, intra-uterine scarring and adenomyosis)
• Hormonal imbalances (progesterone deficiency or luteal phase defects). This most commonly results in occult RPL.
• Deficient blood flow to the uterine lining (thin uterine lining).
• Immunologic implantation dysfunction (IID). A major cause of RPL. Plays a role in 75% of cases where chromosomally normal preimplantation embryos fail to implant.
• Interference of blood supply to the developing conceptus can occur due to a hereditary clotting disorder known as Thrombophilia.

2. Genetic and/or structural chromosomal abnormality of the embryo.Genetic abnormalities are rare causes of RPL. Structural chromosomal abnormalities are slightly more common but are also occur infrequently (1%). These are referred to as unbalanced translocation and they result from part of one chromosome detaching and then fusing with another chromosome. Additionally, a number of studies suggest the existence of paternal (sperm derived) effect on human embryo quality and pregnancy outcome that are not reflected as a chromosomal abnormality. Damaged sperm DNA can have a negative impact on fetal development and present clinically as occult or early clinical miscarriage. The Sperm Chromatin Structure Assay (SCSA) which measures the same endpoints are newer and possibly improved methods for evaluating.

IMMUNOLOGIC IMPLANTATION DYSFUNCTION
Autoimmune IID: Here an immunologic reaction is produced by the individual to his/her body’s own cellular components. The most common antibodies that form in such situations are APA and antithyroid antibodies (ATA).
But it is only when specialized immune cells in the uterine lining, known as cytotoxic lymphocytes (CTL) and natural killer (NK) cells, become activated and start to release an excessive/disproportionate amount of TH-1 cytokines that attack the root system of the embryo, that implantation potential is jeopardized. Diagnosis of such activation requires highly specialized blood test for cytokine activity that can only be performed by a handful of reproductive immunology reference laboratories in the United States.
Alloimmune IID, i.e., where antibodies are formed against antigens derived from another member of the same species, is believed to be a relatively common immunologic cause of recurrent pregnancy loss.
Autoimmune IID is often genetically transmitted. Thus it should not be surprising to learn that it is more likely to exist in women who have a family (or personal) history of primary autoimmune diseases such as lupus erythematosus (LE), scleroderma or autoimmune hypothyroidism (Hashimoto’s disease), autoimmune hyperthyroidism (Grave’s disease), rheumatoid arthritis, etc. Reactionary (secondary) autoimmunity can occur in conjunction with any medical condition associated with widespread tissue damage. One such gynecologic condition is endometriosis. Since autoimmune IID is usually associated with activated NK and T-cells from the outset, it usually results in such very early destruction of the embryo’s root system that the patient does not even recognize that she is pregnant. Accordingly the condition usually presents as “unexplained infertility” or “unexplained IVF failure” rather than as a miscarriage.
Alloimmune IID, on the other hand, usually starts off presenting as unexplained miscarriages (often manifesting as RPL). Over time as NK/T cell activation builds and eventually becomes permanently established the patient often goes from RPL to “infertility” due to failed implantation. RPL is more commonly the consequence of alloimmune rather than autoimmune implantation dysfunction.
However, regardless, of whether miscarriage is due to autoimmune or alloimmune implantation dysfunction the final blow to the pregnancy is the result of activated NK cells and CTL in the uterine lining that damage the developing embryo’s “root system” (trophoblast) so that it can no longer sustain the growing conceptus. This having been said, it is important to note that autoimmune IID is readily amenable to reversal through timely, appropriately administered, selective immunotherapy, and alloimmune IID is not. It is much more difficult to treat successfully, even with the use of immunotherapy. In fact, in some cases the only solution will be to revert to selective immunotherapy plus using donor sperm (provided there is no “match” between the donor’s DQa profile and that of the female recipient) or alternatively to resort to gestational surrogacy.
DIAGNOSING THE CAUSE OF RPL
In the past, women who miscarried were not evaluated thoroughly until they had lost several pregnancies in a row. This was because sporadic miscarriages are most commonly the result of embryo numerical chromosomal irregularities (aneuploidy) and thus not treatable. However, a consecutive series of miscarriages points to a repetitive cause that is non-chromosomal and is potentially remediable. Since RPL is most commonly due to a uterine pathology or immunologic causes that are potentially treatable, it follows that early chromosomal evaluation of products of conception could point to a potentially treatable situation. Thus I strongly recommend that such testing be done in most cases of miscarriage. Doing so will avoid a great deal of unnecessary heartache for many patients.
Establishing the correct diagnosis is the first step toward determining effective treatment for couples with RPL. It results from a problem within the pregnancy itself or within the uterine environment where the pregnancy implants and grows. Diagnostic tests useful in identifying individuals at greater risk for a problem within the pregnancy itself include:

Karyotyping (chromosome analysis) both prospective parents
• Assessment of the karyotype of products of conception derived from previous miscarriage specimens
• Ultrasound examination of the uterine cavity after sterile water is injected or sonohysterogram, fluid ultrasound, etc.)
• Hysterosalpingogram (dye X-ray test)
• Hysteroscopic evaluation of the uterine cavity
• Full hormonal evaluation (estrogen, progesterone, adrenal steroid hormones, thyroid hormones, FSH/LH, etc.)
• Immunologic testing to include:
a) Antiphospholipid antibody (APA) panel
b) Antinuclear antibody (ANA) panel
c) Antithyroid antibody panel (i.e., antithyroglobulin and antimicrosomal antibodies)
d) Reproductive immunophenotype
e) Natural killer cell activity (NKa) assay (i.e., K562 target cell test)
f) Alloimmune testing of both the male and female partners

TREATMENT OF RPL
Treatment for Anatomic Abnormalities of the Uterus: This involves restoration through removal of local lesions such as fibroids, scar tissue, and endometrial polyps or timely insertion of a cervical cerclage (a stitch placed around the neck of the weakened cervix) or the excision of a uterine septum when indicated.
Treatment of Thin Uterine Lining: A thin uterine lining has been shown to correlate with compromised pregnancy outcome. Often this will be associated with reduced blood flow to the endometrium. Such decreased blood flow to the uterus can be improved through treatment with sildenafil and possibly aspirin.
Sildenafil (Viagra) Therapy. Viagra has been used successfully to increase uterine blood flow. However, to be effective it must be administered starting as soon as the period stops up until the day of ovulation and it must be administered vaginally (not orally). Viagra in the form of vaginal suppositories given in the dosage of 25 mg four times a day has been shown to increase uterine blood flow as well as thickness of the uterine lining. To date, we have seen significant improvement of the thickness of the uterine lining in about 70% of women treated. Successful pregnancy resulted in 42% of women who responded to the Viagra. It should be remembered that most of these women had previously experienced repeated IVF failures.
Use of Aspirin: This is an anti-prostaglandin that improves blood flow to the endometrium. It is administered at a dosage of 81 mg orally, daily from the beginning of the cycle until ovulation.

Treating Immunologic Implantation Dysfunction with Selective Immunotherapy: Modalities such as IL/IVIg, heparinoids (Lovenox/Clexane), and corticosteroids (dexamethasone, prednisone, prednisolone) can be used in select cases depending on autoimmune or alloimmune dysfunction.
The Use of IVF in the Treatment of RPL
In the following circumstances, IVF is the preferred option:
1. When in addition to a history of RPL, another standard indication for IVF (e.g., tubal factor, endometriosis, and male factor infertility) is superimposed.
2. In cases where selective immunotherapy is needed to treat an immunologic implantation dysfunction.
The reason for IVF being a preferred approach in such cases is that in order to be effective, the immunotherapy needs to be initiated well before spontaneous or induced ovulation. Given the fact that the anticipated birthrate per cycle of COS with or without IUI is at best about 15%, it follows that short of IVF, to have even a reasonable chance of a live birth, most women with immunologic causes of RPL would need to undergo immunotherapy repeatedly, over consecutive cycles. Conversely, with IVF, the chance of a successful outcome in a single cycle of treatment is several times greater and, because of the attenuated and concentrated time period required for treatment, IVF is far safer and thus represents a more practicable alternative
Since embryo aneuploidy is a common cause of miscarriage, the use of preimplantation genetic diagnosis (PGD), with tests such as CGH, can provide a valuable diagnostic and therapeutic advantage in cases of RPL. PGD requires IVF to provide access to embryos for testing.
There are a few cases of intractable alloimmune dysfunction due to absolute DQ alpha matching where Gestational Surrogacy or use of donor sperm could represent the only viable recourse, other than abandoning treatment altogether and/or resorting to adoption. Other non-immunologic factors such as an intractably thin uterine lining or severe uterine pathology might also warrant that last resort consideration be given to gestational surrogacy.
The good news is that if a couple with RPL is open to all of the diagnostic and treatment options referred to above, a live birthrate of 70%–80% is ultimately achievable.
I strongly recommend that you visit http://www.SherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.
• The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
• Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
• IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
• The Fundamental Requirements For Achieving Optimal IVF Success
• Ovarian Stimulation for IVF using GnRH Antagonists: Comparing the Agonist/Antagonist Conversion Protocol.(A/ACP) With the “Conventional” Antagonist Approach
• Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
• Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
• Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
• The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
• Blastocyst Embryo Transfers Should be the Standard of Care in IVF
• IVF: How Many Attempts should be considered before Stopping?
• “Unexplained” Infertility: Often a matter of the Diagnosis Being Overlooked!
• IVF Failure and Implantation Dysfunction:
• The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID):PART 1-Background
• Immunologic Implantation Dysfunction (IID) & Infertility (IID):PART 2- Making a Diagnosis
• Immunologic Dysfunction (IID) & Infertility (IID):PART 3-Treatment
• Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
• Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management:(Case Report
• Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
• Intralipid (IL) Administration in IVF: It’s Composition; How it Works; Administration; Side-effects; Reactions and Precautions
• Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
• Endometrial Thickness, Uterine Pathology and Immunologic Factors
• Vaginally Administered Viagra is Often a Highly Effective Treatment to Help Thicken a Thin Uterine Lining
• Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
• A personalized, stepwise approach to IVF
• How Many Embryos should be transferred: A Critical Decision in IVF.
• The Role of Nutritional Supplements in Preparing for IVF

______________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
RN

Hello Doctor. Is a day 21 progesterone level of 35.98 ng/ml confirmatory of pregnancy? I had been put on Letroz from day 2-6, followed by HCG injection on Day 12. Today, at day 29, I noticed spotting (although very little). Can I take the home pregnancy test tomorrow?

reply
Dr. Geoffrey Sher

If I were you I would wait until the 28th day of the cycle to do a urine pregnancy test!

Good luck!

Geoff Sher

reply
Jessica O

I am 37 year old with endometriosis. I also have fibroids that are not impacting my uterus. I have low amh and have had three egg retrievals with 6, 5 and 5 eggs with one viable embryo and one failed FET. My fertility doctor wants to continue same protocol 150 Menopur and 300 Gonal F. My question is do I have NK Cells or immunology issues as I have had chemical pregnancies in the past. Is this the right protocol for me?

reply
Dr. Geoffrey Sher

When women with infertility due to endometriosis seek treatment, they are all too often advised to first try ovarian stimulation (ovulation Induction) with intrauterine insemination (IUI) ………as if to say that this would be just as likely to result in a baby as would in vitro fertilization (IVF). Nothing could be further from reality It is time to set the record straight. And hence this communication!
Bear in mind that the cost of treatment comprises both financial and emotional components and that it is the cost of having a baby rather than cost of a procedure. Then consider the fact that regardless of her age or the severity of the condition, women with infertility due to endometriosis are several fold more likely to have a baby per treatment cycle of IVF than with IUI. It follows that there is a distinct advantage in doing IVF first, rather than as a last resort.
So then, why is it that ovulation induction with or without IUI is routinely offered proposed preferentially to women with mild to moderately severe endometriosis? Could it in part be due to the fact that most practicing doctors do not provide IVF services but are indeed remunerated for ovarian stimulation and IUI services and are thus economically incentivized to offer IUI as a first line approach? Or is because of the often erroneous belief that the use of fertility drugs will in all cases induce the release (ovulation) of multiple eggs at a time and thereby increase the chance of a pregnancy. The truth however is that while normally ovulating women (the majority of women who have mild to moderately severe endometriosis) respond to ovarian stimulation with fertility drugs by forming multiple follicles, they rarely ovulate > 1 (or at most 2) egg at a time. This is because such women usually only develop a single dominant follicle which upon ovulating leaves the others intact. This is the reason why normally ovulating women who undergo ovulation induction usually will not experience improved pregnancy potential, nor will they have a marked increase in multiple pregnancies. Conversely, non-ovulating women (as well as those with dysfunctional ovulation) who undergo ovulation induction, almost always develop multiple large follicles that tend to ovulate in unison. This increases the potential to conceive along with an increased risk multiple pregnancies.

So let me take a stab at explaining why IVF is more successful than IUI or surgical correction in the treatment of endometriosis-related infertility:
1. The toxic pelvic factor: Endometriosis is a condition where the lining of the uterus (the endometrium) grows outside the uterus. While this process begins early in the reproductive life of a woman, with notable exceptions, it only becomes manifest in the 2ndhalf of her reproductive life. After some time, these deposits bleed and when the blood absorbs it leaves a visible pigment that can be identified upon surgical exposure of the pelvis. Such endometriotic deposits invariably produce and release toxins” into the pelvic secretions that coat the surface of the membrane (the peritoneum) that envelops all abdominal and pelvic organs, including the uterus, tubes and ovaries. These toxins are referred to as “the peritoneal factor”. Following ovulation, the egg(s) must pass from the ovary (ies), through these toxic secretions to reach the sperm lying in wait in the outer part the fallopian tube (s) tube(s) where, the sperm lie in waiting. In the process of going from the ovary(ies) to the Fallopian tube(s) these eggs become exposed to the “peritoneal toxins” which alter s the envelopment of the egg (i.e. zona pellucida) making it much less receptive to being fertilized by sperm. As a consequence, if they are chromosomally normal such eggs are rendered much less likely to be successfully fertilized. Since almost all women with endometriosis have this problem, it is not difficult to understand why they are far less likely to conceive following ovulation (whether natural or induced through ovulation induction). This “toxic peritoneal factor impacts on eggs that are ovulated whether spontaneously (as in natural cycles) or following the use of fertility drugs and serves to explain why the chance of pregnancy is so significantly reduced in normally ovulating women with endometriosis.
2. The Immunologic Factor: About one third of women who have endometriosis will also have an immunologic implantation dysfunction (IID) linked to activation of uterine natural killer cells (NKa). This will require selective immunotherapy with Intralipid infusions, and/or heparinoids (e.g. Clexane/Lovenox) that is much more effectively implemented in combination with IVF.
3. Surgical treatment of mild to moderate endometriosis does not usually improve pregnancy potential:. The reason is that endometriosis can be considered to be a “work in progress”. New lesions are constantly developing. So it is that for every endometriotic seen there are usually many non-pigmented deposits that are in the process of evolving but are not yet visible to the naked eye and such evolving (non-visible) lesions can also release the same “toxins that compromise fertilization. Accordingly, even after surgical removal of all visible lesions the invisible ones continue to release “toxins” and retain the ability to compromise natural fertilization. It also explains why surgery to remove endometriotic deposits in women with mild to moderate endometriosis usually will fail to significantly improve pregnancy generating potential. In contrast, IVF, by removing eggs from the ovaries prior to ovulation, fertilizing these outside of the body and then transferring the resulting embryo(s) to the uterus, bypasses the toxic pelvic environment and is therefore is the treatment of choice in cases of endometriosis-related infertility.
4. Ovarian Endometriomas: Women, who have advanced endometriosis, often have endometriotic ovarian cysts, known as endometriomas. These cysts contain decomposed menstrual blood that looks like melted chocolate…hence the name “chocolate cysts”. These space occupying lesions can activate ovarian connective tissue (stroma or theca) resulting in an overproduction of male hormones (especially testosterone). An excess of ovarian testosterone can severely compromise follicle and egg development in the affected ovary. Thus there are two reasons for treating endometriomas. The first is to alleviate symptoms and the second is to optimize egg and embryo quality. Conventional treatment of endometriomas involves surgical drainage of the cyst contents with subsequent removal of the cyst wall (usually by laparoscopy), increasing the risk of surgical complications. We recently reported on a new, effective and safe outpatient approach to treating endometriomas in women planning to undergo IVF. We termed the treatment ovarian Sclerotherapy. The process involves; needle aspiration of the “chocolate colored liquid content of the endometriotic cyst, followed by the injection of 5% tetracycline hydrochloride into the cyst cavity. Such treatment will, more than 75% of the time result in disappearance of the lesion within 6-8 weeks. Ovarian sclerotherapy can be performed under local anesthesia or under conscious sedation. It is a safe and effective alternative to surgery for definitive treatment of recurrent ovarian endometriomas in a select group of patients planning to undergo IVF

I am not suggesting that all women with infertility-related endometriosis should automatically resort to IVF. Quite to the contrary…. In spite of having reduced fertility potential, many women with mild to moderate endometriosis can and do go on to conceive on their own (without treatment). It is just that the chance of this happening is so is much lower than normal.

IN SUMMARY: For young ovulating women (< 35 years of age ) with endometriosis, who have normal reproductive anatomy and have fertile male partners, expectant treatment is often preferable to IUI or IVF. However, for older women, women who (regardless of their age) have any additional factor (e.g. pelvic adhesions, ovarian endometriomas, male infertility, IID or diminished ovarian reserve-DOR) IVF should be the primary treatment of choice. I strongly recommend that you visit www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly. • The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride” • Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol • IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation (COS) • The Fundamental Requirements For Achieving Optimal IVF Success • Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols. • Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF: • The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 1-Background • Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 2- Making a Diagnosis • Immunologic Dysfunction (IID) & Infertility (IID): PART 3-Treatment • Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID) • Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management: (Case Report) • Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID) • Intralipid (IL) Administration in IVF: It’s Composition; how it Works; Administration; Side-effects; Reactions and Precautions • Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy! • Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas • Should IVF Treatment Cycles be provided uninterrupted or be Conducted in 7-12 Pre-scheduled “Batches” per Year • A personalized, stepwise approach to IVF • How Many Embryos should be transferred: A Critical Decision in IVF? • Endometriosis and Immunologic Implantation Dysfunction (IID) and IVF • Endometriosis and Infertility: Why IVF Rather than IUI or Surgery Should be the Treatment of Choice. • Endometriosis and Infertility: The Influence of Age and Severity on Treatment Options • Early -Endometriosis-related Infertility: Ovulation Induction (with or without Intrauterine Insemination) and Reproductive Surgery Versus IVF • Treating Ovarian Endometriomas with Sclerotherapy. • Effect of Advanced Endometriosis with Endometriotic cysts (Endometriomas) on IVF Outcome & Treatment Options. • Deciding Between Intrauterine Insemination (IUI) and In Vitro Fertilization (IVF). • Intrauterine Insemination (IUI): Who Needs it & who Does Not: Pro’s & • Induction of Ovulation with Clomiphene Citrate: Mode of Action, Indications, Benefits, Limitations and Contraindications for its use • Clomiphene Induction of Ovulation: Its Use and Misuse! ______________________________________________________ ADDENDUM: PLEASE READ!! INTRODUCING SHER FERTILITY SOLUTIONS (SFS) Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
Sandra

HLA/KIR mismatch

Hi Dr. Sher,

We did the HLA/KIR test through IGLS and it came out that my husband and I do have a mismatch. My clinic prescribes me now Neupogen for higher implantation and success rate. I had a failed transfer before of a PGS normal embryo.

Do you believe in Neupogen?
Is there a similar drug since this one would cost me over 20000 dollars for the course of 9 weeks. Thanks

reply
Dr. Geoffrey Sher

We should talk!

I invite you to call my assistant, Patti and set up an online consultation with me.

Central to making a diagnosis of an immunologic implantation dysfunction (IID) is a need for the appropriate interpretation of Natural Killer Cell Activity (NKa). In this regard, one of the commonest and most serious errors, is interpret the blood concentration of natural killer cells as being relevant. Rather it is the activity (toxicity) of NK cells that matters as mentioned. This activity can best be measured using the blood, K-562 target cell test (the gold standard). and/ or endometrial biopsy for cytokine activity.
With the K-562 test, the most important consideration is the percentage of target cells “killed” in the “native state”. In most cases a level of >10% killing should be regarded with suspicion and >12% overtly abnormal. In addition to reporting the result of the K-562 test, in the “native state” (without adding, Immunoglobulin-G (IVIG) or Intralipid (IL) which many Laboratories erroneously do to try and determine whether either or both of these immune therapies would have a therapeutic benefit or is/are unlikely to be of clinical value. The entire premise upon which this assertion is based, is in my opinion flawed. Clinically such NK cell deactivation can only be significantly affected in vivo as it takes more than a week following infusion to occur. Thus, what happens to the percentage of target cells killed with the K-562 test, by adding IVIG or IL is in my opinion irrelevant
Another way to assess endometrial NKa is by measuring TH-1 and TH-2 cytokines in endometrial tissue derived through biopsy.TH-1 cytokines kill the trophoblast (the root system of the embryo). Thus if is an excess of TH-1 cytokine activity is found with/without a disruption in the TH-1: TH-2 ratio, this points to NK cell activation.
There are basically two causes of immunologic implantation dysfunction (IID), a) Autoimmune (85%) & , b) Alloimmune (15%). The former occurs when the body reacts to its own tissue and the latter (far less common) when the male and female partners share certain genotypic similarities involving DQ alpha and HLA genes. In both cases IID results in rejection of the pregnancy due to uterine Natural Killer (NK) Cell and T-cell activation leading to the release of an excessive amount of TH-1 cytokines. These, “toxins” attack the embryo’s root system (trophoblast), killing the cells and causing implantation to fail.
Autoimmune Implantation Dysfunction: Autoimmune implantation dysfunction, most commonly presents with presumed “infertility” due to such early pregnancy losses that the woman did not even know she was pregnant in the first place. Sometimes there as an early miscarriage. Tests required are: a) blood levels of all IgA, IgG and IgM-related antiphospholipid antibodies (APA’s) directed against six or seven specific phospholipids, b) both antithyroid antibodies (antithyroid and antimicrosomal antibodies), c) a comprehensive reproductive immunophenotype (RIP) and, c) most importantly, assessment of Natural Killer (NK) cell activity (rather than concentration) by measuring by their killing, using the K-562 target cell test and/or endometrial cytokine activity tests.
It is important to recognize that currently there are only about 3 or 4 Reproductive Immunology Reference Laboratories in the U.S.A that, are capable of reliably analyzing the required elements with a sufficient degree of sensitivity and specificity. I use a Reprosource, a laboratory located in Boston,MA.
Patients with Alloimmune implantation Dysfunction usually present with a history of unexplained (usually repeated) miscarriages or secondary infertility (where the woman conceived initially and thereupon was either unable to conceive again or started having repeated early miscarriages. However, it can also present as “presumed” primary infertility. Alloimmune dysfunction is diagnosed by testing the blood of both the male and female partners for matching DQ alpha genes and NK/CTL activation. It is important to note that any DQ alpha match (partial or complete) will only result in an IID when there both a DQa/HLA match exists along with NK cell activation. With the exception of cases where both partners have a total (absolute DQa match and treatment requires the use of sperm from a non-matching sperm donor, about 90% of cases alloimmune implantation will have a partial match where 1: 2 embryos will match the woman’s DQa genotype and half will not. In cases of an alloimmune dysfunction (with associated NKa), treatment with IL or IVIG will in my opinion, will not protect against a matching embryo being rejected. It can only clear the NK environment for an embryo that does not match the woman’s DQa genotype. For this reason, it is my opinion that only 1 embryo should be transferred at a time because, given the fact that i:2 embryos will match, transferring >1 embryo at a time creates a risk that the matching embryo will evoke a local NKa/’cytokine response that will “muddy the water” for both. Thus, in cases of a “partial” DQa match I recommend against transferring more than a single embryo at a time.

I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

• The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
• Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
• IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation (COS)
• The Fundamental Requirements for Achieving Optimal IVF Success
• Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
• The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 1-Background
• Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 2- Making a Diagnosis
• Immunologic Dysfunction (IID) & Infertility (IID): PART 3-Treatment
• Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID) Why did my IVF Fail
• Recurrent Pregnancy Loss (RPL): Why do I keep losing my Pregnancies
• Genetically Testing Embryos for IVF
• Staggered IVF
• Staggered IVF with PGS- Selection of “Competent” Embryos Greatly Enhances the Utility & Efficiency of IVF.
• Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation
• Preimplantation Genetic Testing (PGS) in IVF: It should be Used Selectively and NOT be Routine.
• IVF: Selecting the Best Quality Embryos to Transfer
• Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
• PGS in IVF: Are Some Chromosomally abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
• Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management 🙁 Case Report)
• Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
• Intralipid (IL) Administration in IVF: It’s Composition; how it Works; Administration; Side-effects; Reactions and Precautions
• Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
• Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
• Should IVF Treatment Cycles be provided uninterrupted or be Conducted in 7-12 Pre-scheduled “Batches” per Year.
• A personalized, stepwise approach to IVF
• Nutritional supplements in IVF
______________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

Geoff Sher

reply
Neeva R

Hi sir
I had three embryos one in blastocyst stage and other two are inearly blastocyst stage. I have used hpt on 5dp5dt and got bfn. I m using Michelle aq injections and evaporin. I have certain symptoms like fatigue, af cramps, sore boobs fluctuations, severe sweating but I don’t know whether these symptoms are due to pregnancy or progesterone. Is there any peculiar symptom to say that I m pregnant????

reply
Nikki

Hi Doctor,
I had frozen embryo transfer on 2sep and my first beta hcg was 100 on 11 th sep, it was 97 on 15th sep, 137
on 18th sep and 567 on 22 sep. I don’t have fallopian tubes. Request your views on the same, whether it is viable or not?

reply
Dr. Geoffrey Sher

Sadly, I am not very optimistic! I hope I am wrong!

Good luck and G-d bless!

Geoff Sher

reply
Ola

Dear Dr, Sher,

After 10 chemical pregnancies and 1 failed IVF, this time I`m trying a medicated cycle since I dont have financial resources for another IVF, but I`m following your instructions after reading your articles and success stories.
From Day 1 I have been taking prednisone 10 mg daily, enoxaparin 0.4 daily, metafolin, B12, selenium, iodine, vitamin c, D3 and magnesium.
From day 2-6 took femara 5mg daily. I have only one tube. Responded well to both ovaries.
Day 7 of cycle I took 100 ml intralipids for 3 hrs and prednisone 10 mg which I`m taking every day.
Today at 12th day of cycle the largest follicle from the ovary that I have the tube was 22 mm and endometrium 8.5mm.
Today at 10 am took ovitrelle 250 mcg and within 36 hrs hoping to ovulate.
Doctor prescribed to start tomorrow crinone 8% 2 x daily and enoxaparine 0.6 daily.
Is it Ok if I take estradiol valerate 1 mg daily and I increase the dose of prednisone from 10 to 20 mg ? I do have endometriosis 1st stage, MTHFR homozygous and Hashimoto thyroid. From today I will start levothyroxine 12.5 daily.
Thank you from the bottom of my heart for advices you give and for being my/our hope.

reply
Dr. Geoffrey Sher

It is likely b\that you have an implantation dysfunction and given your endometriosis, this could be an immunologic issue (immunologic implantation dysfunction”. I think we should talk before you go any further.

When it comes to reproduction, humans are the poorest performers of all mammals. In fact we are so inefficient that up to 75% of fertilized eggs do not produce live births, and up to 30% of pregnancies end up being lost within 10 weeks of conception (in the first trimester). RPL is defined as two (2) or more failed pregnancies. Less than 5% of women will experience two (2) consecutive miscarriages, and only 1% experience three or more.
Pregnancy loss can be classified by the stage of pregnancy when the loss occurs:
• Early pregnancy loss (first trimester)
• Late pregnancy loss (after the first trimester)
• Occult “hidden” and not clinically recognized, (chemical) pregnancy loss (occurs prior to ultrasound confirmation of pregnancy)
• Early pregnancy losses usually occur sporadically (are not repetitive).

In more than 70% of cases the loss is due to embryo aneuploidy (where there are more or less than the normal quota of 46 chromosomes). Conversely, repeated losses (RPL), with isolated exceptions where the cause is structural (e.g., unbalanced translocations), are seldom attributable to numerical chromosomal abnormalities (aneuploidy). In fact, the vast majority of cases of RPL are attributable to non-chromosomal causes such as anatomical uterine abnormalities or Immunologic Implantation Dysfunction (IID).
Since most sporadic early pregnancy losses are induced by chromosomal factors and thus are non-repetitive, having had a single miscarriage the likelihood of a second one occurring is no greater than average. However, once having had two losses the chance of a third one occurring is double (35-40%) and after having had three losses the chance of a fourth miscarriage increases to about 60%. The reason for this is that the more miscarriages a woman has, the greater is the likelihood of this being due to a non-chromosomal (repetitive) cause such as IID. It follows that if numerical chromosomal analysis (karyotyping) of embryonic/fetal products derived from a miscarriage tests karyotypically normal, then by a process of elimination, there would be a strong likelihood of a miscarriage repeating in subsequent pregnancies and one would not have to wait for the disaster to recur before taking action. This is precisely why we strongly advocate that all miscarriage specimens be karyotyped.
There is however one caveat to be taken into consideration. That is that the laboratory performing the karyotyping might unwittingly be testing the mother’s cells rather than that of the conceptus. That is why it is not possible to confidently exclude aneuploidy in cases where karyotyping of products suggests a “chromosomally normal” (euploid) female.
Late pregnancy losses (occurring after completion of the 1st trimester/12th week) occur far less frequently (1%) than early pregnancy losses. They are most commonly due to anatomical abnormalities of the uterus and/or cervix. Weakness of the neck of the cervix rendering it able to act as an effective valve that retains the pregnancy (i.e., cervical incompetence) is in fact one of the commonest causes of late pregnancy loss. So also are developmental (congenital) abnormalities of the uterus (e.g., a uterine septum) and uterine fibroid tumors. In some cases intrauterine growth retardation, premature separation of the placenta (placental abruption), premature rupture of the membranes and premature labor can also causes of late pregnancy loss.
Much progress has been made in understanding the mechanisms involved in RPL. There are two broad categories:
1. Problems involving the uterine environment in which a normal embryo is prohibited from properly implanting and developing. Possible causes include:
• Inadequate thickening of the uterine lining
• Irregularity in the contour of the uterine cavity (polyps, fibroid tumors in the uterine wall, intra-uterine scarring and adenomyosis)
• Hormonal imbalances (progesterone deficiency or luteal phase defects). This most commonly results in occult RPL.
• Deficient blood flow to the uterine lining (thin uterine lining).
• Immunologic implantation dysfunction (IID). A major cause of RPL. Plays a role in 75% of cases where chromosomally normal preimplantation embryos fail to implant.
• Interference of blood supply to the developing conceptus can occur due to a hereditary clotting disorder known as Thrombophilia.

2. Genetic and/or structural chromosomal abnormality of the embryo.Genetic abnormalities are rare causes of RPL. Structural chromosomal abnormalities are slightly more common but are also occur infrequently (1%). These are referred to as unbalanced translocation and they result from part of one chromosome detaching and then fusing with another chromosome. Additionally, a number of studies suggest the existence of paternal (sperm derived) effect on human embryo quality and pregnancy outcome that are not reflected as a chromosomal abnormality. Damaged sperm DNA can have a negative impact on fetal development and present clinically as occult or early clinical miscarriage. The Sperm Chromatin Structure Assay (SCSA) which measures the same endpoints are newer and possibly improved methods for evaluating.

IMMUNOLOGIC IMPLANTATION DYSFUNCTION
Autoimmune IID: Here an immunologic reaction is produced by the individual to his/her body’s own cellular components. The most common antibodies that form in such situations are APA and antithyroid antibodies (ATA).
But it is only when specialized immune cells in the uterine lining, known as cytotoxic lymphocytes (CTL) and natural killer (NK) cells, become activated and start to release an excessive/disproportionate amount of TH-1 cytokines that attack the root system of the embryo, that implantation potential is jeopardized. Diagnosis of such activation requires highly specialized blood test for cytokine activity that can only be performed by a handful of reproductive immunology reference laboratories in the United States.
Alloimmune IID, i.e., where antibodies are formed against antigens derived from another member of the same species, is believed to be a relatively common immunologic cause of recurrent pregnancy loss.
Autoimmune IID is often genetically transmitted. Thus it should not be surprising to learn that it is more likely to exist in women who have a family (or personal) history of primary autoimmune diseases such as lupus erythematosus (LE), scleroderma or autoimmune hypothyroidism (Hashimoto’s disease), autoimmune hyperthyroidism (Grave’s disease), rheumatoid arthritis, etc. Reactionary (secondary) autoimmunity can occur in conjunction with any medical condition associated with widespread tissue damage. One such gynecologic condition is endometriosis. Since autoimmune IID is usually associated with activated NK and T-cells from the outset, it usually results in such very early destruction of the embryo’s root system that the patient does not even recognize that she is pregnant. Accordingly the condition usually presents as “unexplained infertility” or “unexplained IVF failure” rather than as a miscarriage.
Alloimmune IID, on the other hand, usually starts off presenting as unexplained miscarriages (often manifesting as RPL). Over time as NK/T cell activation builds and eventually becomes permanently established the patient often goes from RPL to “infertility” due to failed implantation. RPL is more commonly the consequence of alloimmune rather than autoimmune implantation dysfunction.
However, regardless, of whether miscarriage is due to autoimmune or alloimmune implantation dysfunction the final blow to the pregnancy is the result of activated NK cells and CTL in the uterine lining that damage the developing embryo’s “root system” (trophoblast) so that it can no longer sustain the growing conceptus. This having been said, it is important to note that autoimmune IID is readily amenable to reversal through timely, appropriately administered, selective immunotherapy, and alloimmune IID is not. It is much more difficult to treat successfully, even with the use of immunotherapy. In fact, in some cases the only solution will be to revert to selective immunotherapy plus using donor sperm (provided there is no “match” between the donor’s DQa profile and that of the female recipient) or alternatively to resort to gestational surrogacy.
DIAGNOSING THE CAUSE OF RPL
In the past, women who miscarried were not evaluated thoroughly until they had lost several pregnancies in a row. This was because sporadic miscarriages are most commonly the result of embryo numerical chromosomal irregularities (aneuploidy) and thus not treatable. However, a consecutive series of miscarriages points to a repetitive cause that is non-chromosomal and is potentially remediable. Since RPL is most commonly due to a uterine pathology or immunologic causes that are potentially treatable, it follows that early chromosomal evaluation of products of conception could point to a potentially treatable situation. Thus I strongly recommend that such testing be done in most cases of miscarriage. Doing so will avoid a great deal of unnecessary heartache for many patients.
Establishing the correct diagnosis is the first step toward determining effective treatment for couples with RPL. It results from a problem within the pregnancy itself or within the uterine environment where the pregnancy implants and grows. Diagnostic tests useful in identifying individuals at greater risk for a problem within the pregnancy itself include:

Karyotyping (chromosome analysis) both prospective parents
• Assessment of the karyotype of products of conception derived from previous miscarriage specimens
• Ultrasound examination of the uterine cavity after sterile water is injected or sonohysterogram, fluid ultrasound, etc.)
• Hysterosalpingogram (dye X-ray test)
• Hysteroscopic evaluation of the uterine cavity
• Full hormonal evaluation (estrogen, progesterone, adrenal steroid hormones, thyroid hormones, FSH/LH, etc.)
• Immunologic testing to include:
a) Antiphospholipid antibody (APA) panel
b) Antinuclear antibody (ANA) panel
c) Antithyroid antibody panel (i.e., antithyroglobulin and antimicrosomal antibodies)
d) Reproductive immunophenotype
e) Natural killer cell activity (NKa) assay (i.e., K562 target cell test)
f) Alloimmune testing of both the male and female partners

TREATMENT OF RPL
Treatment for Anatomic Abnormalities of the Uterus: This involves restoration through removal of local lesions such as fibroids, scar tissue, and endometrial polyps or timely insertion of a cervical cerclage (a stitch placed around the neck of the weakened cervix) or the excision of a uterine septum when indicated.
Treatment of Thin Uterine Lining: A thin uterine lining has been shown to correlate with compromised pregnancy outcome. Often this will be associated with reduced blood flow to the endometrium. Such decreased blood flow to the uterus can be improved through treatment with sildenafil and possibly aspirin.
Sildenafil (Viagra) Therapy. Viagra has been used successfully to increase uterine blood flow. However, to be effective it must be administered starting as soon as the period stops up until the day of ovulation and it must be administered vaginally (not orally). Viagra in the form of vaginal suppositories given in the dosage of 25 mg four times a day has been shown to increase uterine blood flow as well as thickness of the uterine lining. To date, we have seen significant improvement of the thickness of the uterine lining in about 70% of women treated. Successful pregnancy resulted in 42% of women who responded to the Viagra. It should be remembered that most of these women had previously experienced repeated IVF failures.
Use of Aspirin: This is an anti-prostaglandin that improves blood flow to the endometrium. It is administered at a dosage of 81 mg orally, daily from the beginning of the cycle until ovulation.

Treating Immunologic Implantation Dysfunction with Selective Immunotherapy: Modalities such as IL/IVIg, heparinoids (Lovenox/Clexane), and corticosteroids (dexamethasone, prednisone, prednisolone) can be used in select cases depending on autoimmune or alloimmune dysfunction.
The Use of IVF in the Treatment of RPL
In the following circumstances, IVF is the preferred option:
1. When in addition to a history of RPL, another standard indication for IVF (e.g., tubal factor, endometriosis, and male factor infertility) is superimposed.
2. In cases where selective immunotherapy is needed to treat an immunologic implantation dysfunction.
The reason for IVF being a preferred approach in such cases is that in order to be effective, the immunotherapy needs to be initiated well before spontaneous or induced ovulation. Given the fact that the anticipated birthrate per cycle of COS with or without IUI is at best about 15%, it follows that short of IVF, to have even a reasonable chance of a live birth, most women with immunologic causes of RPL would need to undergo immunotherapy repeatedly, over consecutive cycles. Conversely, with IVF, the chance of a successful outcome in a single cycle of treatment is several times greater and, because of the attenuated and concentrated time period required for treatment, IVF is far safer and thus represents a more practicable alternative
Since embryo aneuploidy is a common cause of miscarriage, the use of preimplantation genetic diagnosis (PGD), with tests such as CGH, can provide a valuable diagnostic and therapeutic advantage in cases of RPL. PGD requires IVF to provide access to embryos for testing.
There are a few cases of intractable alloimmune dysfunction due to absolute DQ alpha matching where Gestational Surrogacy or use of donor sperm could represent the only viable recourse, other than abandoning treatment altogether and/or resorting to adoption. Other non-immunologic factors such as an intractably thin uterine lining or severe uterine pathology might also warrant that last resort consideration be given to gestational surrogacy.
The good news is that if a couple with RPL is open to all of the diagnostic and treatment options referred to above, a live birthrate of 70%–80% is ultimately achievable.
I strongly recommend that you visit http://www.SherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.
• The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
• Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
• IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
• The Fundamental Requirements For Achieving Optimal IVF Success
• Ovarian Stimulation for IVF using GnRH Antagonists: Comparing the Agonist/Antagonist Conversion Protocol.(A/ACP) With the “Conventional” Antagonist Approach
• Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
• Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
• Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
• The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
• Blastocyst Embryo Transfers Should be the Standard of Care in IVF
• IVF: How Many Attempts should be considered before Stopping?
• “Unexplained” Infertility: Often a matter of the Diagnosis Being Overlooked!
• IVF Failure and Implantation Dysfunction:
• The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID):PART 1-Background
• Immunologic Implantation Dysfunction (IID) & Infertility (IID):PART 2- Making a Diagnosis
• Immunologic Dysfunction (IID) & Infertility (IID):PART 3-Treatment
• Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
• Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management:(Case Report
• Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
• Intralipid (IL) Administration in IVF: It’s Composition; How it Works; Administration; Side-effects; Reactions and Precautions
• Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
• Endometrial Thickness, Uterine Pathology and Immunologic Factors
• Vaginally Administered Viagra is Often a Highly Effective Treatment to Help Thicken a Thin Uterine Lining
• Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
• A personalized, stepwise approach to IVF
• How Many Embryos should be transferred: A Critical Decision in IVF.
• The Role of Nutritional Supplements in Preparing for IVF

______________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
Brittany

Hi Dr. Sher,
My husband and I had 3 failed IVF cycles and have been trying for around 5 years. Before trying another embryo transfer our doctor suggested hysteroscopy. She found uteral scarring during hysteroscopy which were removed. We naturally got pregnant the month after hysteroscopy. Unfortunately that pregnancy ended in a miscarriage at around 7th week. Our doctor mentioned that the scarring could have been the problem all along.

Would you recommend trying naturally for a few months now that my hcg is back to normal after miscarriage? Or do you think it is better to go ahead with the frozen embryo transfer as soon as we can?

What’s your general assessment in this scenario considering that we got pregnant the month after hysteroscopy? I’m 36 and have hashimotos thyroid with normal TSH with levothyroxine and my husband has varicocele but normal sperm count with good motility.

Thanks!

reply
Dr. Geoffrey Sher

It is likely that you have an anatomical implantation dysfunction, linked to endometrial damage. This likely resulted from post-pregnancy endometritis. Surgical excision of scar tissue balone will not necessarily resolve the issue. We should talk!

Whenever a patient fails to achieve a viable pregnancy following embryo transfer (ET), the first question asked is why! Was it simply due to, bad luck?, How likely is the failure to recur in future attempts and what can be done differently, to avoid it happening next time?.
It is an indisputable fact that any IVF procedure is at least as likely to fail as it is to succeed. Thus when it comes to outcome, luck is an undeniable factor. Notwithstanding, it is incumbent upon the treating physician to carefully consider and address the causes of IVF failure before proceeding to another attempt:
1. Age: The chance of a woman under 35Y of age having a baby per embryo transfer is about 35-40%. From there it declines progressively to under 5% by the time she reaches her mid-forties. This is largely due to declining chromosomal integrity of the eggs with advancing age…”a wear and tear effect” on eggs that are in the ovaries from birth.
2. Embryo Quality/”competency (capable of propagating a viable pregnancy)”. As stated, the woman’s age plays a big role in determining egg/embryo quality/”competency”. This having been said, aside from age the protocol used for controlled ovarian stimulation (COS) is the next most important factor. It is especially important when it comes to older women, and women with diminished ovarian reserve (DOR) where it becomes essential to be aggressive, and to customize and individualize the ovarian stimulation protocol.
We used to believe that the uterine environment is more beneficial to embryo development than is the incubator/petri dish and that accordingly, the earlier on in development that embryos are transferred to the uterus, the better. To achieve this goal, we used to select embryos for transfer based upon their day two or microscopic appearance (“grade”). But we have since learned that the further an embryo has advanced in its development, the more likely it is to be “competent” and that embryos failing to reach the expanded blastocyst stage within 5-6 days of being fertilized are almost invariably “incompetent” and are unworthy of being transferred. Moreover, the introduction into clinical practice about 15y ago, (by Levent Keskintepe PhD and myself) of Preimplantation Genetic Sampling (PGS), which assesses for the presence of all the embryos chromosomes (complete chromosomal karyotyping), provides another tool by which to select the most “competent” embryos for transfer. This methodology has selective benefit when it comes to older women, women with DOR, cases of unexplained repeated IVF failure and women who experience recurrent pregnancy loss (RPL).
3. The number of the embryos transferred: Most patients believe that the more embryos transferred the greater the chance of success. To some extent this might be true, but if the problem lies with the use of a suboptimal COS protocol, transferring more embryos at a time won’t improve the chance of success. Nor will the transfer of a greater number of embryos solve an underlying embryo implantation dysfunction (anatomical molecular or immunologic).Moreover, the transfer of multiple embryos, should they implant, can and all too often does result in triplets or greater (high order multiples) which increases the incidence of maternal pregnancy-induced complications and of premature delivery with its serious risks to the newborn. It is for this reason that I rarely recommend the transfer of more than 2 embryos at a time and am moving in the direction of advising single embryo transfers …especially when it comes to transferring embryos derived through the fertilization of eggs from young women.

4. Implantation Dysfunction (ID): Implantation dysfunction is a very common (often overlooked) cause of “unexplained” IVF failure. This is especially the case in young ovulating women who have normal ovarian reserve and have fertile partners. Failure to identify, typify, and address such issues is, in my opinion, an unfortunate and relatively common cause of repeated IVF failure in such women. Common sense dictates that if ultrasound guided embryo transfer is performed competently and yet repeated IVF attempts fail to propagate a viable pregnancy, implantation dysfunction must be seriously considered. Yet ID is probably the most overlooked factor. The most common causes of implantation dysfunction are:

a. A“ thin uterine lining”
b. A uterus with surface lesions in the cavity (polyps, fibroids, scar tissue)
c. Immunologic implantation dysfunction (IID)
d. Endocrine/molecular endometrial receptivity issues
e. Ureaplasma Urealyticum (UU) Infection of cervical mucous and the endometrial lining of the uterus, can sometimes present as unexplained early pregnancy loss or unexplained failure following intrauterine insemination or IVF. The infection can also occur in the man, (prostatitis) and thus can go back and forth between partners, with sexual intercourse. This is the reason why both partners must be tested and if positive, should be treated contemporaneously.
Certain causes of infertility are repetitive and thus cannot readily be reversed. Examples include advanced age of the woman; severe male infertility; immunologic infertility associated with alloimmune implantation dysfunction (especially if it is a “complete DQ alpha genetic match between partners plus uterine natural killer cell activation (NKa).
I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

• The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
• Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
• IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation (COS)
• The Fundamental Requirements for Achieving Optimal IVF Success
• Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
• Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
• Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
• Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
• The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
• Blastocyst Embryo Transfers should be the Standard of Care in IVF
• IVF: How Many Attempts should be considered before Stopping?
• “Unexplained” Infertility: Often a matter of the Diagnosis Being Overlooked!
• IVF Failure and Implantation Dysfunction:
• The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 1-Background
• Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 2- Making a Diagnosis
• Immunologic Dysfunction (IID) & Infertility (IID): PART 3-Treatment
• Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
• Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management 🙁 Case Report)
• Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
• Intralipid (IL) Administration in IVF: It’s Composition; how it Works; Administration; Side-effects; Reactions and Precautions
• Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
• Endometrial Thickness, Uterine Pathology and Immunologic Factors
• Vaginally Administered Viagra is Often a Highly Effective Treatment to Help Thicken a Thin Uterine Lining
• Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
• A personalized, stepwise approach to IVF
• How Many Embryos should be transferred: A Critical Decision in IVF?
______________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
Jen

I meant to add to my previous questions regarding my hcg levels, I’ve also Had spotting on and off the past few days. It’s gone from pink to A few red drops to brown. This combined with the lack of Doubling has me nervous

reply
Dr. Geoffrey Sher

Short of dropping blood hCG levels, an ultrasound at 6-7 weeks is the only definitive way to determine the viability of the pregnancy.

Whenever a patient fails to achieve a viable pregnancy following embryo transfer (ET), the first question asked is why! Was it simply due to, bad luck?, How likely is the failure to recur in future attempts and what can be done differently, to avoid it happening next time?.
It is an indisputable fact that any IVF procedure is at least as likely to fail as it is to succeed. Thus when it comes to outcome, luck is an undeniable factor. Notwithstanding, it is incumbent upon the treating physician to carefully consider and address the causes of IVF failure before proceeding to another attempt:
1. Age: The chance of a woman under 35Y of age having a baby per embryo transfer is about 35-40%. From there it declines progressively to under 5% by the time she reaches her mid-forties. This is largely due to declining chromosomal integrity of the eggs with advancing age…”a wear and tear effect” on eggs that are in the ovaries from birth.
2. Embryo Quality/”competency (capable of propagating a viable pregnancy)”. As stated, the woman’s age plays a big role in determining egg/embryo quality/”competency”. This having been said, aside from age the protocol used for controlled ovarian stimulation (COS) is the next most important factor. It is especially important when it comes to older women, and women with diminished ovarian reserve (DOR) where it becomes essential to be aggressive, and to customize and individualize the ovarian stimulation protocol.
We used to believe that the uterine environment is more beneficial to embryo development than is the incubator/petri dish and that accordingly, the earlier on in development that embryos are transferred to the uterus, the better. To achieve this goal, we used to select embryos for transfer based upon their day two or microscopic appearance (“grade”). But we have since learned that the further an embryo has advanced in its development, the more likely it is to be “competent” and that embryos failing to reach the expanded blastocyst stage within 5-6 days of being fertilized are almost invariably “incompetent” and are unworthy of being transferred. Moreover, the introduction into clinical practice about 15y ago, (by Levent Keskintepe PhD and myself) of Preimplantation Genetic Sampling (PGS), which assesses for the presence of all the embryos chromosomes (complete chromosomal karyotyping), provides another tool by which to select the most “competent” embryos for transfer. This methodology has selective benefit when it comes to older women, women with DOR, cases of unexplained repeated IVF failure and women who experience recurrent pregnancy loss (RPL).
3. The number of the embryos transferred: Most patients believe that the more embryos transferred the greater the chance of success. To some extent this might be true, but if the problem lies with the use of a suboptimal COS protocol, transferring more embryos at a time won’t improve the chance of success. Nor will the transfer of a greater number of embryos solve an underlying embryo implantation dysfunction (anatomical molecular or immunologic).Moreover, the transfer of multiple embryos, should they implant, can and all too often does result in triplets or greater (high order multiples) which increases the incidence of maternal pregnancy-induced complications and of premature delivery with its serious risks to the newborn. It is for this reason that I rarely recommend the transfer of more than 2 embryos at a time and am moving in the direction of advising single embryo transfers …especially when it comes to transferring embryos derived through the fertilization of eggs from young women.

4. Implantation Dysfunction (ID): Implantation dysfunction is a very common (often overlooked) cause of “unexplained” IVF failure. This is especially the case in young ovulating women who have normal ovarian reserve and have fertile partners. Failure to identify, typify, and address such issues is, in my opinion, an unfortunate and relatively common cause of repeated IVF failure in such women. Common sense dictates that if ultrasound guided embryo transfer is performed competently and yet repeated IVF attempts fail to propagate a viable pregnancy, implantation dysfunction must be seriously considered. Yet ID is probably the most overlooked factor. The most common causes of implantation dysfunction are:

a. A“ thin uterine lining”
b. A uterus with surface lesions in the cavity (polyps, fibroids, scar tissue)
c. Immunologic implantation dysfunction (IID)
d. Endocrine/molecular endometrial receptivity issues
e. Ureaplasma Urealyticum (UU) Infection of cervical mucous and the endometrial lining of the uterus, can sometimes present as unexplained early pregnancy loss or unexplained failure following intrauterine insemination or IVF. The infection can also occur in the man, (prostatitis) and thus can go back and forth between partners, with sexual intercourse. This is the reason why both partners must be tested and if positive, should be treated contemporaneously.
Certain causes of infertility are repetitive and thus cannot readily be reversed. Examples include advanced age of the woman; severe male infertility; immunologic infertility associated with alloimmune implantation dysfunction (especially if it is a “complete DQ alpha genetic match between partners plus uterine natural killer cell activation (NKa).
I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

• The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
• Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
• IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation (COS)
• The Fundamental Requirements for Achieving Optimal IVF Success
• Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
• Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
• Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
• Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
• The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
• Blastocyst Embryo Transfers should be the Standard of Care in IVF
• IVF: How Many Attempts should be considered before Stopping?
• “Unexplained” Infertility: Often a matter of the Diagnosis Being Overlooked!
• IVF Failure and Implantation Dysfunction:
• The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 1-Background
• Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 2- Making a Diagnosis
• Immunologic Dysfunction (IID) & Infertility (IID): PART 3-Treatment
• Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
• Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management 🙁 Case Report)
• Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
• Intralipid (IL) Administration in IVF: It’s Composition; how it Works; Administration; Side-effects; Reactions and Precautions
• Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
• Endometrial Thickness, Uterine Pathology and Immunologic Factors
• Vaginally Administered Viagra is Often a Highly Effective Treatment to Help Thicken a Thin Uterine Lining
• Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
• A personalized, stepwise approach to IVF
• How Many Embryos should be transferred: A Critical Decision in IVF?
______________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
Sara

Dear Dr, Sher,
After 3 ivf, 6 Failed ET ( excellent quality embryos), I’ve done an endometrial biopsy that reveal an immunological problem : an excess of TH-1 cytokine activity is found with a disruption in the TH-1: TH-2 ratio, and a excess of NK cell activation.( CD56:9,99/// IL15/Fn14: 14,4/// IL18/TWEAK: 0,35).
My doctor prescrive me to have an IV intralipids 20% 100ml to be diluted in 400ml of 0.9% Na CL.
I live in Morocco and 20% intralipids are not sold here. The only product available with lipids is Periolimel N4 ( with 400 ml of lipid emulsion containing 60g of lipids of which 20% only soybean oil and 600 kcal lipidic ).
My doctor and pharmacist have no idea how to use Periolimel instead of intralipids.
Could you please tell me the dosage to use Periolimel N4 (the lipid compartment) to substitute for intralipids 20%.

reply
Ann

Hi Dr Sher-
So i had IVF, my hcg levels were 74 then 282 then 604, had ultrasound at 5 weeks 5 days they said was good saw gestational sac and yolk sac and measuring correctly. But went to 2nd ultrasound 7 weeks, and doc said it didn’t grow much measuring at 5 weeks 5 days but he still wants me to continue my meds estrace (estrogen pills 2pills 3x a day and progestrone injection daily at nights) and come back in 2 weeks for ultrasound again (will be 9 weeks)
I’m very confused, if it doesn’t seem good unfortanatlety then why am still taking the meds? And if I continue taking meds wouldn’t it stop me delay from getting period or bleeding or miscarriage. Or will that happen regardless of taking meds? I feel nothing no symptoms, Is there anyyyy hope.. Please help.

reply
Dr. Geoffrey Sher

Hi Ann,

Your doctor is playing safe…to determine with certainty as to how the pregnancy will go. I agree with this cautious approach!

Geoff Sher

reply
Jen

Hi dr. Sher.
My hcg 14 days post 5 day transfer was 2400. 4 days later it’s 8460. It’s not doubling every 48, seems to have slowed, reminiscent of my recent miscarriage. This is a pga tested embryo. Does hcg rise Slow at a certain point or am I in trouble here. Thanks

reply
Dr. Geoffrey Sher

Conversely, I am reasonably optimistic…given these numbers~

Good luck!

Geoff Sher

reply
Ann

So i did an Hcg blood test it shows at 5500 at 7 weeks 6 days but I also went to one of US places with 2d 3D because I couldn’t wait and nurse said all they see is gest sac and yolk sac and seem like ur around 5 weeks 5 days.. so seems like didn’t grow from what the doc had seen a week before at my 7 week US and she said if based on ur Ivf dates if you should be around almost 8 weeks usually we would see baby and heartbeat. So instead of waiting one more week and injecting progestrones and taking estrace they shud be seeing you and telling you to stop taking all meds because they don’t see baby or heartbeat and it still shows as 5 weeks 5 days when ur suppose to be 8 weeks. My fert dr had originally said on that 7 week US the week before that he doesn’t think it will grow since your older in your early 40s but it’s up to me to either wait continue taking meds pray or they can give med to get rid of it. They put it on me. I don’t know, first time doing ivf. Please help.
Also, with the last 5 embroyos they used for the 2 transfers, i did get pregnant like this both times but it was either empty or didn’t make it to 8 weeks. So lost of what to do next, again they put on me.
Yes I did have a healthy baby boy 2 and half years ago when I was 41 through IUI. I had tried IUI a couple times again after that baby but didn’t get pregnant so was told try Ivf. But as mentioned above it didn’t work for me. Do you think I should go back try IUIs for now? Please help me and give your expertise advice.
(by the way, your last name means a Lion in our Afg country)
Thanks doctor!

reply
Dr. Geoffrey Sher

No!

At this stage IUI would not be advisable. What is important is to try and determine why you are having these ;losses. I suggest that they do a chromosome analysis (karyotyping of the products of conception, if/when this pregnancy is terminated.

Perhaps we should talk . However, I would need much more information tom advise authoritatively.

Geoff Sher

reply
Abb sara

Bonjour,

Suite à mes échecs d’implantation avec des embryons top qualité, mon médecin m’a prescrit des perfusions d’intralipides 20% 100ml à diluer dans dans 400 ml de Na CL 0,9%.

Je suis installée au Maroc et les intralipides 20% n’y sont pas commercialisés.

Le seul produit disponible avec les lipides est le Periolimel N4( compartimenté avec 400 ml de d’emulsion lipidique contenant 60g de lipides dont 20% uniquement de huile de soja ).

Mon médecin traitant et mon pharmacien n’ont pas idée comment utiliser le Periolimel à la place des intralipides.

Je vous prie de bien vouloir m’indiquer le dosage utiliser le Periolimel N4 ( le compartiment lipidique) pour le substituer aux intralipides 20%.

Je vous remercie par avance.

reply
Deniz Yucel

Hello doctor, this is Deniz. I am 32 years old. I suffer from endometriosis and my ANA test came back positive. I tried 5 Frozen Embryo transfer with good quality embryos but 4 of them never imlanted and 1 early miscarrige. Contrary to my doctor, I believe thar this is an immune issue. For my sixt transfer I want to try prednisone and clexane but I do not know when to start and the dosages. Based on my research, I understand that I should start prednisone 8-10 mg 10 days prior to FET and make it 16-20 mg following on the day of transfer and start clexane on transfer day. Does it make sense? If I knew how I should proceed further, I can discuss the alternatives with my doctor. Looking forward for your reply. Many thanks in advance, Deniz.

reply
Dr. Geoffrey Sher

I strongly advise that before you consider taking meds for a possible immunologic implantation dysfunction, the the underlying immunopathology be identified throu=gh appropriate testing.

Central to making a diagnosis of an immunologic implantation dysfunction (IID) is a need for the appropriate interpretation of Natural Killer Cell Activity (NKa). In this regard, one of the commonest and most serious errors, is interpret the blood concentration of natural killer cells as being relevant. Rather it is the activity (toxicity) of NK cells that matters as mentioned. This activity can best be measured using the blood, K-562 target cell test (the gold standard). and/ or endometrial biopsy for cytokine activity.
With the K-562 test, the most important consideration is the percentage of target cells “killed” in the “native state”. In most cases a level of >10% killing should be regarded with suspicion and >12% overtly abnormal. In addition to reporting the result of the K-562 test, in the “native state” (without adding, Immunoglobulin-G (IVIG) or Intralipid (IL) which many Laboratories erroneously do to try and determine whether either or both of these immune therapies would have a therapeutic benefit or is/are unlikely to be of clinical value. The entire premise upon which this assertion is based, is in my opinion flawed. Clinically such NK cell deactivation can only be significantly affected in vivo as it takes more than a week following infusion to occur. Thus, what happens to the percentage of target cells killed with the K-562 test, by adding IVIG or IL is in my opinion irrelevant
Another way to assess endometrial NKa is by measuring TH-1 and TH-2 cytokines in endometrial tissue derived through biopsy.TH-1 cytokines kill the trophoblast (the root system of the embryo). Thus if is an excess of TH-1 cytokine activity is found with/without a disruption in the TH-1: TH-2 ratio, this points to NK cell activation.
There are basically two causes of immunologic implantation dysfunction (IID), a) Autoimmune (85%) & , b) Alloimmune (15%). The former occurs when the body reacts to its own tissue and the latter (far less common) when the male and female partners share certain genotypic similarities involving DQ alpha and HLA genes. In both cases IID results in rejection of the pregnancy due to uterine Natural Killer (NK) Cell and T-cell activation leading to the release of an excessive amount of TH-1 cytokines. These, “toxins” attack the embryo’s root system (trophoblast), killing the cells and causing implantation to fail.
Autoimmune Implantation Dysfunction: Autoimmune implantation dysfunction, most commonly presents with presumed “infertility” due to such early pregnancy losses that the woman did not even know she was pregnant in the first place. Sometimes there as an early miscarriage. Tests required are: a) blood levels of all IgA, IgG and IgM-related antiphospholipid antibodies (APA’s) directed against six or seven specific phospholipids, b) both antithyroid antibodies (antithyroid and antimicrosomal antibodies), c) a comprehensive reproductive immunophenotype (RIP) and, c) most importantly, assessment of Natural Killer (NK) cell activity (rather than concentration) by measuring by their killing, using the K-562 target cell test and/or endometrial cytokine activity tests.
It is important to recognize that currently there are only about 3 or 4 Reproductive Immunology Reference Laboratories in the U.S.A that, are capable of reliably analyzing the required elements with a sufficient degree of sensitivity and specificity. I use a Reprosource, a laboratory located in Boston,MA.
Patients with Alloimmune implantation Dysfunction usually present with a history of unexplained (usually repeated) miscarriages or secondary infertility (where the woman conceived initially and thereupon was either unable to conceive again or started having repeated early miscarriages. However, it can also present as “presumed” primary infertility. Alloimmune dysfunction is diagnosed by testing the blood of both the male and female partners for matching DQ alpha genes and NK/CTL activation. It is important to note that any DQ alpha match (partial or complete) will only result in an IID when there both a DQa/HLA match exists along with NK cell activation. With the exception of cases where both partners have a total (absolute DQa match and treatment requires the use of sperm from a non-matching sperm donor, about 90% of cases alloimmune implantation will have a partial match where 1: 2 embryos will match the woman’s DQa genotype and half will not. In cases of an alloimmune dysfunction (with associated NKa), treatment with IL or IVIG will in my opinion, will not protect against a matching embryo being rejected. It can only clear the NK environment for an embryo that does not match the woman’s DQa genotype. For this reason, it is my opinion that only 1 embryo should be transferred at a time because, given the fact that i:2 embryos will match, transferring >1 embryo at a time creates a risk that the matching embryo will evoke a local NKa/’cytokine response that will “muddy the water” for both. Thus, in cases of a “partial” DQa match I recommend against transferring more than a single embryo at a time.

I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

• The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
• Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
• IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation (COS)
• The Fundamental Requirements for Achieving Optimal IVF Success
• Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
• The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 1-Background
• Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 2- Making a Diagnosis
• Immunologic Dysfunction (IID) & Infertility (IID): PART 3-Treatment
• Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID) Why did my IVF Fail
• Recurrent Pregnancy Loss (RPL): Why do I keep losing my Pregnancies
• Genetically Testing Embryos for IVF
• Staggered IVF
• Staggered IVF with PGS- Selection of “Competent” Embryos Greatly Enhances the Utility & Efficiency of IVF.
• Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation
• Preimplantation Genetic Testing (PGS) in IVF: It should be Used Selectively and NOT be Routine.
• IVF: Selecting the Best Quality Embryos to Transfer
• Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
• PGS in IVF: Are Some Chromosomally abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
• Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management 🙁 Case Report)
• Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
• Intralipid (IL) Administration in IVF: It’s Composition; how it Works; Administration; Side-effects; Reactions and Precautions
• Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
• Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
• Should IVF Treatment Cycles be provided uninterrupted or be Conducted in 7-12 Pre-scheduled “Batches” per Year.
• A personalized, stepwise approach to IVF
• Nutritional supplements in IVF
______________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
Gina

Hi. I just had an FET (donor embryos) on August 27th. The embryo was normal PGS tested, I did a biopsy to determine the window of implantation, my uterine lining was thick and looked good. I got pregnant but Friday, Sept 17th, I woke up to lots of blood and clots. My HCG was 3048 that day (Friday, Sept 17th) and I go tomorrow for another hcg test and ultrasound. I have been on a blood thinner shot through the whole process. The past few days I’ve had a headache and very weak. Did I have a miscarriage or a sub hematoma? My betas were so good—288 (sept 7th), 769 (sept 9th). What could have gone wrong? I pray I didn’t miscarry but all the signs point to yes. Thank you.

reply
Dr. Geoffrey Sher

Before writing this pregnancy off, I urge you to go in and have a vaginal speculum examination and a pelvic US to try and determine the origin of the bleeding.

Geoff Sher

reply
Gina

Thank you for the advice but unfortunately I miscarried or it ended in chemical pregnancy.
Donor embryo (parents blood types O- mom and O+ dad and I am O+), genetically tested normal, betas were great, removed polyp with surgery first, did mock cycle so window of implantation was correct, after lupron took dexamethasone, folic acid, lovenox, estradiol, progesterone, prenatal vitamin, intralipids once before transfer and once one week after transfer. The night of the last intralipids is when I started spotting, then the next morning it was all over.
So if the embryo was normal and it actually started implanting, then it must be me that has the issue. What else could have been done to make the transfer work? Is it even worth trying again—I have 3 embryos left? My insurance doesn’t pay for any treatments so if the chances of anther normal embryo not working is greater than it resulting in a live birth, then I just may not can try it. I want another baby so bad though. You were my doctor back in 2013 when my biological only one little embryo had to wait until day 6 to transfer. He’s 7yrs old now!!! You talked to me and got me through the wait, questions, anxiety and I will be forever grateful. 7 years, a failed IVF, and 2 donor embryo chemical pregnancies later, here I am again. Time/age is not on my side so if this is worth trying again I want to start after my hcg goes back to 0. Any advice, suggestions, comments would be greatly appreciated. Thank you so much for what you do.

reply
Gina

Also, I had the ERA scratch and ALICE done and it said I had e-coli in my uterus and there wasn’t any good bacteria (flora) in my uterus. So I was put on cephalexin (or Cipro—forgot which) for 2 weeks then probiotic vaginal suppositories. I was not tested again to see if either helped. Could that have been an issue?

reply
Dr. Geoffrey Sher

Frankly Gina….I doubt this is the issue.

Perhaps we should talk. Consider calling my assistant, Patti to set up an online consultation with me.

Geoff Sher

Dr. Geoffrey Sher

Implantation dysfunction is unfortunately often overlooked as an important cause of IVF failure. In the pursuit of optimizing outcome with IVF, the clinician has a profound responsibility to meticulously assess and address this important issue if IVF success is to be optimized. This is especially relevant in cases of “unexplained IVF failure, Recurrent Pregnancy Loss (RPL) and in women suspected of having underlying anatomical and immunologic factors. Doing so will not only maximize the chance of a viable pregnancy but enhancing placentation, will at the same time promote the noble objective of optimizing the quality of life after birth.”
IVF success rates have been improving over the last decade. The average live birth rate per embryo transfer in the U.S.A for women under 40y using their own eggs , is currently better than 1:3 women. However, there is still a wide variation from program to program for IVF live birth rates, ranging from 20% to near 50%. Based upon these statistics, the majority of women undergoing IVF in the United States require two or more attempts to have a baby. IVF practitioners in the United States commonly attribute the wide dichotomy in IVF success rates to variability in expertise of the various embryology laboratories. This is far from accurate. In fact, other factors such as wide variations in patient selection and the failure to develop individualized protocols for ovarian stimulation or to address those infective, anatomical and immunologic factors that influence embryo implantation are at least equally important.
About 80% of IVF failures are due to “embryo incompetency” that is largely due to an irregular quota of chromosomes (aneuploidy) which is usually related to advancing age of the woman and is further influenced by other factors such as the protocol selected for ovarian stimulation, diminished ovarian reserve (DOR)m and severe male factor infertility. However in about 20% of dysfunctional cases embryo implantation is the cause of failure.
Anatomical Endo-uterine Lesions: This blog article will focus on implantation dysfunction and IVF failure due to:
• Anatomical abnormalities in the uterine cavity (e.g. scarring, polyps and encroaching fibroid tumors)
• A thin endometrial lining
• Immunologic rejection of the embryos
Several studies performed both in the United States and abroad have confirmed that a dye X-Ray or hysterosalpingogram (HSG) will fail to identify small endouterine surface lesions in >20% of cases. This is significant because even small uterine lesions have the potential to adversely affect implantation. Hysteroscopy is the traditional method for evaluating the integrity of the uterine cavity in preparation for IVF. It also permits resection of most uterine surface lesions, such as submucous uterine fibroids (myomas), intrauterine adhesions and endometrial or placental polyps. All of these can interfere with implantation by producing a local “inflammatory- type” response similar in nature to that which is caused by an intrauterine contraceptive device. Hysterosonography (syn; HSN/ saline ultrasound examination) and hysteroscopy have all but supplanted HSG to assess the uterine cavity in preparation for IVF. HSN which is less invasive and far less expensive than is than hysteroscopy involves a small amount of a sterile saline solution is injected into the uterine cavity, whereupon a vaginal ultrasound examination is performed to assess the contour of the uterine cavity.
Endometrial Thickness: As far back as in 1989 I first reported on the finding that ultrasound assessment of the late proliferative phase endometrium following ovarian stimulation in preparation for IVF, permits better identification of those candidates who are least likely to conceive. We noted that the ideal thickness of the endometrium at the time of ovulation or egg retrieval is >9 mm and that a thickness of less than 8 mm bodes poorly for a successful outcome following IVF.
Then in 1993, I demonstrated that sildenafil (Viagra) introduced into the vagina prior to hCG administration can improve endometrial growth in many women with poor endometrial development. Viagra’s mechanism of action is improvement in uterine blood flow with improved estrogen delivery…thereby enhancing endometrial development.
Immunologic factors: These also play a role in IVF failure. Some women develop antibodies to components of their own cells. This “autoimmune” process involves the production of antiphospholipid, antithyroid, and/or anti-ovarian antibodies – all of which may be associated with activation of Natural Killer (NK) cells in the uterine lining. Activated NK cells (NKa) release certain cytokines (TH-I) that if present in excess, often damage the trophoblast (the embryo’s root system) resulting in immunologic implantation dysfunction (IID). This can manifest as “infertility” or as early miscarriages). In other cases (though less common), the problem is due to “alloimmune” dysfunction. Here the genetic contribution by the male partner renders the embryo “too similar” to the mother. This in turn activates NK cells leading to implantation dysfunction. These IID’s are treated using combinations of medications such as heparin, Clexane, Lovenox, corticosteroids and intralipid (IL).

I strongly recommend that you visit http://www.SherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

• A Fresh Look at the Indications for IVF
• The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
• Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
• IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
• The Fundamental Requirements For Achieving Optimal IVF Success
• Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
• Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
• IVF and the use of Supplementary Human Growth Hormone (HGH) : Is it Worth Trying and who needs it?
• The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
• Blastocyst Embryo Transfers Should be the Standard of Care in IVF
• Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
• IVF: Approach to Selecting the Best Embryos for Transfer to the Uterus.
• Fresh versus Frozen Embryo Transfers (FET) Enhance IVF Outcome
• Frozen Embryo Transfer (FET): A Rational Approach to Hormonal Preparation and How new Methodology is Impacting IVF.
• Genetically Testing Embryos for IVF
• Staggered IVF
• Staggered IVF with PGS- Selection of “Competent” Embryos Greatly Enhances the Utility & Efficiency of IVF.
• Preimplantation Genetic Testing (PGS) in IVF: It should be Used Selectively and NOT be Routine.
• IVF: Selecting the Best Quality Embryos to Transfer
• Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
• PGS in IVF: Are Some Chromosomally abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
• PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
• Endometrial Receptivity Array (ERA): Is There an actual “There, There”?
• IVF Failure and Implantation Dysfunction:
• Diagnosing and Treating Immunologic Implantation Dysfunction (IID)
• The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID):PART 1-Background
• Immunologic Implantation Dysfunction (IID) & Infertility (IID):PART 2- Making a Diagnosis
• Immunologic Dysfunction (IID) & Infertility (IID):PART 3-Treatment
• Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
• Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management:(Case Report
• Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
• Intralipid (IL) Administration in IVF: It’s Composition; How it Works; Administration; Side-effects; Reactions and Precautions
• Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
• Endometrial Thickness, Uterine Pathology and Immunologic Factors
• Vaginally Administered Viagra is Often a Highly Effective Treatment to Help Thicken a Thin Uterine Lining
• A Thin Uterine Lining: Vaginal Viagra is Often the Answer (update)
• Cervical Ureaplasma Urealyticum Infection: How can it Affect IUI/IVF Outcome?
• The Role of Nutritional Supplements in Preparing for IVF
• The Basic Infertility Work-Up
• Defining and Addressing an Abnormal Luteal Phase
• Male Factor Infertility
• Routine Fertilization by Intracytoplasmic Sperm Injection (ICSI): An Argument in Favor
• Hormonal Treatment of Male Infertility
• Hormonal Treatment of Male Infertility
• Antisperm Antibodies, Infertility and the Role of IVF with Intracytoplasmic Sperm Injection (ICSI)
• Endometriosis and Infertily
• Endometriosis and Immunologic Implantation Dysfunction (IID) and IVF
• Endometriosis and Infertility: Why IVF Rather than IUI or Surgery Should be the Treatment of Choice.
• Endometriosis and Infertility: The Influence of Age and Severity on Treatment Options
• Early -Endometriosis-related Infertility: Ovulation Induction (with or without Intrauterine Insemination) and Reproductive Surgery Versus IVF
• Deciding Between Intrauterine Insemination (IUI) and In Vitro Fertilization (IVF).
• Intrauterine Insemination (IUI): Who Needs it & who Does Not: Pro’s & Con’s!IUI-Reflecting upon its Use and Misuse: Time for a Serious “Reality Check
• Mode of Action, Indications, Benefits, Limitations and Contraindications for its ue
• Clomiphene Induction of Ovulation: Its Use and Misuse!
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
Gina Tindall

My doctor is suggesting another EMMA, ALICE, and receptivity biopsy to see if the e-coli is gone and if any good bacteria has produced in my uterus. I’ve read on these things and I’m not sure either caused the chemical pregnancy I told you about. They are wanting to do an HSG to make sure my tubes aren’t swollen and leaking water and also check to see if I have endometriosis. I had a c-section so I do have scaring and my cervix is very difficult to get to now, but again not sure any of this will help an embryo stay implanted. My embryo was PGS normal and my uterine lining was excellent. My doctor said it wasn’t an implantation problem because the embryo did implant–it just didn’t stay attached. They said my progesterone levels were fine and Lovenox increased blood flow (which was the only med I had not previously tried). They said the Intralipids and dexamethasone should have taken care of any infections. The HSG, endometriosis check, e-coli and bacteria check are recommended. And a baby is worth every penny, but my insurance doesn’t cover anything related to fertility issues and after 4 IUI’s, 2 IVF’s, and 2 donor FET’s (that both ended in chemicals) since 2013, I need to know that all of this will have a better outcome of a live birth. I am a single mom (by choice) and if I’m going to spend this much more on another try, I need it to work. Do you think all of these tests are necessary or do you suggest another option? Or do you know of any places that offer financial help for people going through these processes?

Dr. Geoffrey Sher

Very respectfully, I do not buy into this. Perhaps you should consider calling my assistant Patti at 702-533-2691 and set up an online consultation with me.

Geoff Sher

Kat

I just recently started my first IVF cycle after 2 unsuccessful IUIs. I’m 39.
Week after my last IUI/ week past ovulation I was put on 4mg Estrace/ day in anticipation for IVF (in case the IUI cycle does not work). I stayed on it for 3 weeks before starting IVF injections 3 days ago.
After reading more about IVF treatment I see that most doctors recommend OCP prior IVF stimulation. What is the difference between this approach vs. Estrace pill?

reply
Dr. Geoffrey Sher

The concept is the same. However, In personally prefer not to use Estrace as, in part, it metabolizes to estrone and this form of estrogenn can be harmful.

Geoff Sher

reply
Ashley

Hello i’am 34 years old, i have 3 children and am looking yo get pregnant with my fourth however after 5 months of a missed period i went in for some blood work and it turns out my AMH level is 0.2 and FSH level is 7. I used 100mg clomid this month on days 3-7. On day 8 of my cycle i had two follicles on my right side measuring 24mm and 15 mm and one on my left side measuring 13mm. During my follow up scan two days later the 24mm follicle ovulated naturally and the other follicle on the same side was now measuring 17mm and the one on the left side was measuring 15mm. On the 12 day of my cycle the 17mm follicle disappeared and the 15mm follicle on the left side wss now 18mm. My doctor gave me a 250mcg ovitrelle shot when the follicle was 22mm. 4 days later after the shot i went in to see if it ovulated however it regressed 1mm. So my question is what are my chances of getting pregnant with my initial follicle at 24mm that ovulated on its own? I have been testing out the shot and after 10 days post shot my urine tests are dark but getting lighter.

reply
Dr. Geoffrey Sher

Ashley,

First, I am opposed to giving clomiphene to women who have diminished ovarian reserve. Also, Ovitrelle 250mcg is probably half the ideal dosage. It is not likely that this cycle will yield a viable pregnancy. Besides, you really need IVF ASAP. Time is not on your side, given your DOR.

Central to making a diagnosis of an immunologic implantation dysfunction (IID) is a need for the appropriate interpretation of Natural Killer Cell Activity (NKa). In this regard, one of the commonest and most serious errors, is interpret the blood concentration of natural killer cells as being relevant. Rather it is the activity (toxicity) of NK cells that matters as mentioned. This activity can best be measured using the blood, K-562 target cell test (the gold standard). and/ or endometrial biopsy for cytokine activity.
With the K-562 test, the most important consideration is the percentage of target cells “killed” in the “native state”. In most cases a level of >10% killing should be regarded with suspicion and >12% overtly abnormal. In addition to reporting the result of the K-562 test, in the “native state” (without adding, Immunoglobulin-G (IVIG) or Intralipid (IL) which many Laboratories erroneously do to try and determine whether either or both of these immune therapies would have a therapeutic benefit or is/are unlikely to be of clinical value. The entire premise upon which this assertion is based, is in my opinion flawed. Clinically such NK cell deactivation can only be significantly affected in vivo as it takes more than a week following infusion to occur. Thus, what happens to the percentage of target cells killed with the K-562 test, by adding IVIG or IL is in my opinion irrelevant
Another way to assess endometrial NKa is by measuring TH-1 and TH-2 cytokines in endometrial tissue derived through biopsy.TH-1 cytokines kill the trophoblast (the root system of the embryo). Thus if is an excess of TH-1 cytokine activity is found with/without a disruption in the TH-1: TH-2 ratio, this points to NK cell activation.
There are basically two causes of immunologic implantation dysfunction (IID), a) Autoimmune (85%) & , b) Alloimmune (15%). The former occurs when the body reacts to its own tissue and the latter (far less common) when the male and female partners share certain genotypic similarities involving DQ alpha and HLA genes. In both cases IID results in rejection of the pregnancy due to uterine Natural Killer (NK) Cell and T-cell activation leading to the release of an excessive amount of TH-1 cytokines. These, “toxins” attack the embryo’s root system (trophoblast), killing the cells and causing implantation to fail.
Autoimmune Implantation Dysfunction: Autoimmune implantation dysfunction, most commonly presents with presumed “infertility” due to such early pregnancy losses that the woman did not even know she was pregnant in the first place. Sometimes there as an early miscarriage. Tests required are: a) blood levels of all IgA, IgG and IgM-related antiphospholipid antibodies (APA’s) directed against six or seven specific phospholipids, b) both antithyroid antibodies (antithyroid and antimicrosomal antibodies), c) a comprehensive reproductive immunophenotype (RIP) and, c) most importantly, assessment of Natural Killer (NK) cell activity (rather than concentration) by measuring by their killing, using the K-562 target cell test and/or endometrial cytokine activity tests.
It is important to recognize that currently there are only about 3 or 4 Reproductive Immunology Reference Laboratories in the U.S.A that, are capable of reliably analyzing the required elements with a sufficient degree of sensitivity and specificity. I use a Reprosource, a laboratory located in Boston,MA.
Patients with Alloimmune implantation Dysfunction usually present with a history of unexplained (usually repeated) miscarriages or secondary infertility (where the woman conceived initially and thereupon was either unable to conceive again or started having repeated early miscarriages. However, it can also present as “presumed” primary infertility. Alloimmune dysfunction is diagnosed by testing the blood of both the male and female partners for matching DQ alpha genes and NK/CTL activation. It is important to note that any DQ alpha match (partial or complete) will only result in an IID when there both a DQa/HLA match exists along with NK cell activation. With the exception of cases where both partners have a total (absolute DQa match and treatment requires the use of sperm from a non-matching sperm donor, about 90% of cases alloimmune implantation will have a partial match where 1: 2 embryos will match the woman’s DQa genotype and half will not. In cases of an alloimmune dysfunction (with associated NKa), treatment with IL or IVIG will in my opinion, will not protect against a matching embryo being rejected. It can only clear the NK environment for an embryo that does not match the woman’s DQa genotype. For this reason, it is my opinion that only 1 embryo should be transferred at a time because, given the fact that i:2 embryos will match, transferring >1 embryo at a time creates a risk that the matching embryo will evoke a local NKa/’cytokine response that will “muddy the water” for both. Thus, in cases of a “partial” DQa match I recommend against transferring more than a single embryo at a time.

I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

• The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
• Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
• IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation (COS)
• The Fundamental Requirements for Achieving Optimal IVF Success
• Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
• The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 1-Background
• Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 2- Making a Diagnosis
• Immunologic Dysfunction (IID) & Infertility (IID): PART 3-Treatment
• Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID) Why did my IVF Fail
• Recurrent Pregnancy Loss (RPL): Why do I keep losing my Pregnancies
• Genetically Testing Embryos for IVF
• Staggered IVF
• Staggered IVF with PGS- Selection of “Competent” Embryos Greatly Enhances the Utility & Efficiency of IVF.
• Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation
• Preimplantation Genetic Testing (PGS) in IVF: It should be Used Selectively and NOT be Routine.
• IVF: Selecting the Best Quality Embryos to Transfer
• Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
• PGS in IVF: Are Some Chromosomally abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
• Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management 🙁 Case Report)
• Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
• Intralipid (IL) Administration in IVF: It’s Composition; how it Works; Administration; Side-effects; Reactions and Precautions
• Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
• Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
• Should IVF Treatment Cycles be provided uninterrupted or be Conducted in 7-12 Pre-scheduled “Batches” per Year.
• A personalized, stepwise approach to IVF
• Nutritional supplements in IVF
______________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
Ellie

Dear Doctor, Is the IVF treatment successful for patients for those where sperm has no acrosome and are morphologically abnormal? Do you have a webinar or article on this issue?

Thanks and God bless you .

reply
Dr. Geoffrey Sher

Globozoospermia is a s characterized by round-headed acrosomeless spermatozoa. Even in such cases, successful pregnancies have been reported following intracytoplasmic sperm injection (ICSI).

Good luck!

Geoff Sher

reply
Sveta

Dear Doctor.
I am approaching 40. I recently (July) had a frozen blastocyst transfer (two embryos were transferred) which resulted in implantation ( both embryos implanted) . I was continuing to take various medications ( e.g. Divigel, Progesterone, etc. ) prescribed by my fertility doctor until around week 5/ 6 pregnancy when I started experiencing bleeding and strong labdominal pain and ended up in hospital. My twin pregnancy was still confirmed at the time of hospital admission. Few hours later however miscarriage happened. Following the miscarriage doctors performed an operation to remove any remaining tissue. During the same procedure the doctors noticed that my left ovary was raptured resulting in internal bleeding. They couldn’t see any cyst and I lost around 800ml of blood. So I wanted to ask what might have caused this ovary rapture? And could the rapture itself and internal bleeding have caused the miscarriage.

reply
Dr. Geoffrey Sher

It sounds like you ruptured an ovarian follicular cyst (probably a corpus luteum cyst). This is sometimes referred to as “Halban’s syndrome”. It will resolve!

Sorry for your loss!

Good luck!

Geoff Sher

reply
Sveta

Thank you Dr. Appreciate your response. Could have the rapture ultimately caused my miscarriage?

reply
Renee Davis

HCG level at 14 days post IUI was 93. Progesterone 94. Second HCG day 16 was only 115. I am scheduled for 3rd HCG draw tomorrow, day 18. Does this at all sound hopeful?
Hx: PCOS Took clomid this cycle. First try.

reply
Dr. Geoffrey Sher

This is not very encouraging. However, the e next hCG test (2 days later) will be more revealing .It needs to be ovver 220.

Good luck!

Geoff Sher

reply
Maurice

I have had 3 previous miscarriages. I am currently 5 weeks pregnant with a progesterone level of 18. Is this predictive of another non viable pregnancy? Should I take supplements?

reply
Dr. Geoffrey Sher

The progesterone should probably be boosted. Talk to your RE!

Good luck!

Geoff Sher

reply
Brett A

Conceived naturally in 2017 at 30 years old which ended in an early missed miscarriage at 8 weeks. During this time, my husband and I found out we were carriers of ARPKD (polycystic kidney disease) and that we had a 25% chance of passing on the gene. We decided to move forward with IVF with PGT-A and PGT-M to ensure the health of our future children. The first stim cycle went well and we sent 6 embryos to testing with 3 coming back as normal, non affected and/or carrier. First 5AA FET resulted in my now 3 year old son. 
Fast forward to 2020, we had two consecutive FET transfers – first was a biochemical where we had low betas and second achieved pregnancy however we had a missed miscarriage at 9 weeks. 
My RE suggested a laparoscopy post these losses and discovered and successfully removed stage 3 endometriosis. Before the laparascopy we did two stim cycles. First stim cycle we retrieved  15 eggs, 10 mature, 8 fertilized with ICSI ( which we had not done previously) and we ended with no embryos. The difference this cycle was the ICSI and the use of lupron/hcg combo trigger. RE said the lupron did not mature the eggs enough and resulted in poor quality.
Did another stim cycle following, which we used a long lupron protocol and 10,000 HCG as a trigger instead and we retrieved 18 eggs, 12 mature 10 fertilized and 3 were sent for testing. We only had 1 normal 5ba embryo  to transfer. 
Two months post the laparoscopy and removal of visible endo, we did the transfer and it resulted in a chemical pregnancy.
With this being now the 3rd consecutive loss, what steps can we now take or tests we can do to find out why I am experiencing loss after carrying a successful pregnancy to term? I am unsure how to proceed as we do want 1 more child for our family and I don’t want to go through this process yet again for more failed transfers.

reply
Dr. Geoffrey Sher

When it comes to reproduction, humans are the poorest performers of all mammals. In fact we are so inefficient that up to 75% of fertilized eggs do not produce live births, and up to 30% of pregnancies end up being lost within 10 weeks of conception (in the first trimester). RPL is defined as two (2) or more failed pregnancies. Less than 5% of women will experience two (2) consecutive miscarriages, and only 1% experience three or more.
Pregnancy loss can be classified by the stage of pregnancy when the loss occurs:
• Early pregnancy loss (first trimester)
• Late pregnancy loss (after the first trimester)
• Occult “hidden” and not clinically recognized, (chemical) pregnancy loss (occurs prior to ultrasound confirmation of pregnancy)
• Early pregnancy losses usually occur sporadically (are not repetitive).

In more than 70% of cases the loss is due to embryo aneuploidy (where there are more or less than the normal quota of 46 chromosomes). Conversely, repeated losses (RPL), with isolated exceptions where the cause is structural (e.g., unbalanced translocations), are seldom attributable to numerical chromosomal abnormalities (aneuploidy). In fact, the vast majority of cases of RPL are attributable to non-chromosomal causes such as anatomical uterine abnormalities or Immunologic Implantation Dysfunction (IID).
Since most sporadic early pregnancy losses are induced by chromosomal factors and thus are non-repetitive, having had a single miscarriage the likelihood of a second one occurring is no greater than average. However, once having had two losses the chance of a third one occurring is double (35-40%) and after having had three losses the chance of a fourth miscarriage increases to about 60%. The reason for this is that the more miscarriages a woman has, the greater is the likelihood of this being due to a non-chromosomal (repetitive) cause such as IID. It follows that if numerical chromosomal analysis (karyotyping) of embryonic/fetal products derived from a miscarriage tests karyotypically normal, then by a process of elimination, there would be a strong likelihood of a miscarriage repeating in subsequent pregnancies and one would not have to wait for the disaster to recur before taking action. This is precisely why we strongly advocate that all miscarriage specimens be karyotyped.
There is however one caveat to be taken into consideration. That is that the laboratory performing the karyotyping might unwittingly be testing the mother’s cells rather than that of the conceptus. That is why it is not possible to confidently exclude aneuploidy in cases where karyotyping of products suggests a “chromosomally normal” (euploid) female.
Late pregnancy losses (occurring after completion of the 1st trimester/12th week) occur far less frequently (1%) than early pregnancy losses. They are most commonly due to anatomical abnormalities of the uterus and/or cervix. Weakness of the neck of the cervix rendering it able to act as an effective valve that retains the pregnancy (i.e., cervical incompetence) is in fact one of the commonest causes of late pregnancy loss. So also are developmental (congenital) abnormalities of the uterus (e.g., a uterine septum) and uterine fibroid tumors. In some cases intrauterine growth retardation, premature separation of the placenta (placental abruption), premature rupture of the membranes and premature labor can also causes of late pregnancy loss.
Much progress has been made in understanding the mechanisms involved in RPL. There are two broad categories:
1. Problems involving the uterine environment in which a normal embryo is prohibited from properly implanting and developing. Possible causes include:
• Inadequate thickening of the uterine lining
• Irregularity in the contour of the uterine cavity (polyps, fibroid tumors in the uterine wall, intra-uterine scarring and adenomyosis)
• Hormonal imbalances (progesterone deficiency or luteal phase defects). This most commonly results in occult RPL.
• Deficient blood flow to the uterine lining (thin uterine lining).
• Immunologic implantation dysfunction (IID). A major cause of RPL. Plays a role in 75% of cases where chromosomally normal preimplantation embryos fail to implant.
• Interference of blood supply to the developing conceptus can occur due to a hereditary clotting disorder known as Thrombophilia.

2. Genetic and/or structural chromosomal abnormality of the embryo.Genetic abnormalities are rare causes of RPL. Structural chromosomal abnormalities are slightly more common but are also occur infrequently (1%). These are referred to as unbalanced translocation and they result from part of one chromosome detaching and then fusing with another chromosome. Additionally, a number of studies suggest the existence of paternal (sperm derived) effect on human embryo quality and pregnancy outcome that are not reflected as a chromosomal abnormality. Damaged sperm DNA can have a negative impact on fetal development and present clinically as occult or early clinical miscarriage. The Sperm Chromatin Structure Assay (SCSA) which measures the same endpoints are newer and possibly improved methods for evaluating.

IMMUNOLOGIC IMPLANTATION DYSFUNCTION
Autoimmune IID: Here an immunologic reaction is produced by the individual to his/her body’s own cellular components. The most common antibodies that form in such situations are APA and antithyroid antibodies (ATA).
But it is only when specialized immune cells in the uterine lining, known as cytotoxic lymphocytes (CTL) and natural killer (NK) cells, become activated and start to release an excessive/disproportionate amount of TH-1 cytokines that attack the root system of the embryo, that implantation potential is jeopardized. Diagnosis of such activation requires highly specialized blood test for cytokine activity that can only be performed by a handful of reproductive immunology reference laboratories in the United States.
Alloimmune IID, i.e., where antibodies are formed against antigens derived from another member of the same species, is believed to be a relatively common immunologic cause of recurrent pregnancy loss.
Autoimmune IID is often genetically transmitted. Thus it should not be surprising to learn that it is more likely to exist in women who have a family (or personal) history of primary autoimmune diseases such as lupus erythematosus (LE), scleroderma or autoimmune hypothyroidism (Hashimoto’s disease), autoimmune hyperthyroidism (Grave’s disease), rheumatoid arthritis, etc. Reactionary (secondary) autoimmunity can occur in conjunction with any medical condition associated with widespread tissue damage. One such gynecologic condition is endometriosis. Since autoimmune IID is usually associated with activated NK and T-cells from the outset, it usually results in such very early destruction of the embryo’s root system that the patient does not even recognize that she is pregnant. Accordingly the condition usually presents as “unexplained infertility” or “unexplained IVF failure” rather than as a miscarriage.
Alloimmune IID, on the other hand, usually starts off presenting as unexplained miscarriages (often manifesting as RPL). Over time as NK/T cell activation builds and eventually becomes permanently established the patient often goes from RPL to “infertility” due to failed implantation. RPL is more commonly the consequence of alloimmune rather than autoimmune implantation dysfunction.
However, regardless, of whether miscarriage is due to autoimmune or alloimmune implantation dysfunction the final blow to the pregnancy is the result of activated NK cells and CTL in the uterine lining that damage the developing embryo’s “root system” (trophoblast) so that it can no longer sustain the growing conceptus. This having been said, it is important to note that autoimmune IID is readily amenable to reversal through timely, appropriately administered, selective immunotherapy, and alloimmune IID is not. It is much more difficult to treat successfully, even with the use of immunotherapy. In fact, in some cases the only solution will be to revert to selective immunotherapy plus using donor sperm (provided there is no “match” between the donor’s DQa profile and that of the female recipient) or alternatively to resort to gestational surrogacy.
DIAGNOSING THE CAUSE OF RPL
In the past, women who miscarried were not evaluated thoroughly until they had lost several pregnancies in a row. This was because sporadic miscarriages are most commonly the result of embryo numerical chromosomal irregularities (aneuploidy) and thus not treatable. However, a consecutive series of miscarriages points to a repetitive cause that is non-chromosomal and is potentially remediable. Since RPL is most commonly due to a uterine pathology or immunologic causes that are potentially treatable, it follows that early chromosomal evaluation of products of conception could point to a potentially treatable situation. Thus I strongly recommend that such testing be done in most cases of miscarriage. Doing so will avoid a great deal of unnecessary heartache for many patients.
Establishing the correct diagnosis is the first step toward determining effective treatment for couples with RPL. It results from a problem within the pregnancy itself or within the uterine environment where the pregnancy implants and grows. Diagnostic tests useful in identifying individuals at greater risk for a problem within the pregnancy itself include:

Karyotyping (chromosome analysis) both prospective parents
• Assessment of the karyotype of products of conception derived from previous miscarriage specimens
• Ultrasound examination of the uterine cavity after sterile water is injected or sonohysterogram, fluid ultrasound, etc.)
• Hysterosalpingogram (dye X-ray test)
• Hysteroscopic evaluation of the uterine cavity
• Full hormonal evaluation (estrogen, progesterone, adrenal steroid hormones, thyroid hormones, FSH/LH, etc.)
• Immunologic testing to include:
a) Antiphospholipid antibody (APA) panel
b) Antinuclear antibody (ANA) panel
c) Antithyroid antibody panel (i.e., antithyroglobulin and antimicrosomal antibodies)
d) Reproductive immunophenotype
e) Natural killer cell activity (NKa) assay (i.e., K562 target cell test)
f) Alloimmune testing of both the male and female partners

TREATMENT OF RPL
Treatment for Anatomic Abnormalities of the Uterus: This involves restoration through removal of local lesions such as fibroids, scar tissue, and endometrial polyps or timely insertion of a cervical cerclage (a stitch placed around the neck of the weakened cervix) or the excision of a uterine septum when indicated.
Treatment of Thin Uterine Lining: A thin uterine lining has been shown to correlate with compromised pregnancy outcome. Often this will be associated with reduced blood flow to the endometrium. Such decreased blood flow to the uterus can be improved through treatment with sildenafil and possibly aspirin.
Sildenafil (Viagra) Therapy. Viagra has been used successfully to increase uterine blood flow. However, to be effective it must be administered starting as soon as the period stops up until the day of ovulation and it must be administered vaginally (not orally). Viagra in the form of vaginal suppositories given in the dosage of 25 mg four times a day has been shown to increase uterine blood flow as well as thickness of the uterine lining. To date, we have seen significant improvement of the thickness of the uterine lining in about 70% of women treated. Successful pregnancy resulted in 42% of women who responded to the Viagra. It should be remembered that most of these women had previously experienced repeated IVF failures.
Use of Aspirin: This is an anti-prostaglandin that improves blood flow to the endometrium. It is administered at a dosage of 81 mg orally, daily from the beginning of the cycle until ovulation.
Treating Immunologic Implantation Dysfunction with Selective Immunotherapy: Modalities such as IL/IVIg, heparinoids (Lovenox/Clexane), and corticosteroids (dexamethasone, prednisone, prednisolone) can be used in select cases depending on autoimmune or alloimmune dysfunction.
The Use of IVF in the Treatment of RPL
In the following circumstances, IVF is the preferred option:
1. When in addition to a history of RPL, another standard indication for IVF (e.g., tubal factor, endometriosis, and male factor infertility) is superimposed.
2. In cases where selective immunotherapy is needed to treat an immunologic implantation dysfunction.
The reason for IVF being a preferred approach in such cases is that in order to be effective, the immunotherapy needs to be initiated well before spontaneous or induced ovulation. Given the fact that the anticipated birthrate per cycle of COS with or without IUI is at best about 15%, it follows that short of IVF, to have even a reasonable chance of a live birth, most women with immunologic causes of RPL would need to undergo immunotherapy repeatedly, over consecutive cycles. Conversely, with IVF, the chance of a successful outcome in a single cycle of treatment is several times greater and, because of the attenuated and concentrated time period required for treatment, IVF is far safer and thus represents a more practicable alternative
Since embryo aneuploidy is a common cause of miscarriage, the use of preimplantation genetic diagnosis (PGD), with tests such as CGH, can provide a valuable diagnostic and therapeutic advantage in cases of RPL. PGD requires IVF to provide access to embryos for testing.
There are a few cases of intractable alloimmune dysfunction due to absolute DQ alpha matching where Gestational Surrogacy or use of donor sperm could represent the only viable recourse, other than abandoning treatment altogether and/or resorting to adoption. Other non-immunologic factors such as an intractably thin uterine lining or severe uterine pathology might also warrant that last resort consideration be given to gestational surrogacy.
The good news is that if a couple with RPL is open to all of the diagnostic and treatment options referred to above, a live birthrate of 70%–80% is ultimately achievable.
I strongly recommend that you visit http://www.SherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.
• The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
• Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
• IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
• The Fundamental Requirements For Achieving Optimal IVF Success
• Ovarian Stimulation for IVF using GnRH Antagonists: Comparing the Agonist/Antagonist Conversion Protocol.(A/ACP) With the “Conventional” Antagonist Approach
• Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
• Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
• Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
• The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
• Blastocyst Embryo Transfers Should be the Standard of Care in IVF
• IVF: How Many Attempts should be considered before Stopping?
• “Unexplained” Infertility: Often a matter of the Diagnosis Being Overlooked!
• IVF Failure and Implantation Dysfunction:
• The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID):PART 1-Background
• Immunologic Implantation Dysfunction (IID) & Infertility (IID):PART 2- Making a Diagnosis
• Immunologic Dysfunction (IID) & Infertility (IID):PART 3-Treatment
• Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
• Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management:(Case Report
• Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
• Intralipid (IL) Administration in IVF: It’s Composition; How it Works; Administration; Side-effects; Reactions and Precautions
• Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
• Endometrial Thickness, Uterine Pathology and Immunologic Factors
• Vaginally Administered Viagra is Often a Highly Effective Treatment to Help Thicken a Thin Uterine Lining
• Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
• A personalized, stepwise approach to IVF
• How Many Embryos should be transferred: A Critical Decision in IVF.
• The Role of Nutritional Supplements in Preparing for IVF

______________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply

Ask a question or post a comment

Your email address will not be published. Required fields are marked *