Ask Dr. Sher- Open Forum

dr geoffrey sher ivf infertility You are not alone. Dr. Sher is here to answer your questions and support you.

If you would like to schedule a one on one online consultation, telephone, or in person consultation with Dr. Sher, please fill out the form on the right and our team will get you scheduled right away.

Dear Patients,

I created this forum to welcome any questions you have on the topic of infertility, IVF, conception, testing, evaluation, or any related topics. I do my best to answer all questions in less than 24 hours. I know your question is important and, in many cases, I will answer within just a few hours. Thank you for taking the time to trust me with your concern.

– Geoffrey Sher, MD

Ask a question or post a comment

 

26,379 Comments

Kdelistoy

Dear Dr Sher,

I had a modified natural cycle FET (letrozol 5mg+ gonal f 75iu) and my lining grew to 9mm on the day of trigger. (Estrogen level: 3750). 5 days after trigger my blood levels were as follows: Progesterone: 190+ , estrogen: 1.700. On the day of transfer my lining shrunk to 6mm. Is this ok? Why did you think this happened and how can it be prevented?

Ps: medicated cycles do not work for me as my lining does not get thick enough.

reply
Dr. Geoffrey Sher

Hard to comment authoritativelywithout much more information.

Sorry!

Geoff Sher

reply
Irit

Dear Dr. Sher
I am 42 years old, have a 2.t years old son.
Since then early RPL. 5 mc in 16 months.
First fell at week 8 and the resr chemicals. On the last pregnancy I took prednison once I got positive beta and beta climbed nicely until stopped at blight ovlioum.
On this last pregnancy I used my frozen eggs preserved at age 36 for social reasons.
Managed to get tested for HLA-C, dq alpha match and nk cell activity etc.
Got partial dq alpha match and 100% Hla-c match in allel Hla-c*12. My husbsnd is homozygot and I am hetero. As expected eleveted nk etc.
We also took GC route, I wonder whether this hla-c match is an issue? Does it require special GC testing? I want to try to concieve naturally after some further embreyo banking. Do I need neupogen or any additional treatment on top of ivig or lit?
I deeply appreciate your time and good advices. Thank you, Irit

reply
Dr. Geoffrey Sher

When it comes to reproduction, humans are the poorest performers of all mammals. In fact we are so inefficient that up to 75% of fertilized eggs do not produce live births, and up to 30% of pregnancies end up being lost within 10 weeks of conception (in the first trimester). RPL is defined as two (2) or more failed pregnancies. Less than 5% of women will experience two (2) consecutive miscarriages, and only 1% experience three or more.
Pregnancy loss can be classified by the stage of pregnancy when the loss occurs:
• Early pregnancy loss (first trimester)
• Late pregnancy loss (after the first trimester)
• Occult “hidden” and not clinically recognized, (chemical) pregnancy loss (occurs prior to ultrasound confirmation of pregnancy)
• Early pregnancy losses usually occur sporadically (are not repetitive).

In more than 70% of cases the loss is due to embryo aneuploidy (where there are more or less than the normal quota of 46 chromosomes). Conversely, repeated losses (RPL), with isolated exceptions where the cause is structural (e.g., unbalanced translocations), are seldom attributable to numerical chromosomal abnormalities (aneuploidy). In fact, the vast majority of cases of RPL are attributable to non-chromosomal causes such as anatomical uterine abnormalities or Immunologic Implantation Dysfunction (IID).
Since most sporadic early pregnancy losses are induced by chromosomal factors and thus are non-repetitive, having had a single miscarriage the likelihood of a second one occurring is no greater than average. However, once having had two losses the chance of a third one occurring is double (35-40%) and after having had three losses the chance of a fourth miscarriage increases to about 60%. The reason for this is that the more miscarriages a woman has, the greater is the likelihood of this being due to a non-chromosomal (repetitive) cause such as IID. It follows that if numerical chromosomal analysis (karyotyping) of embryonic/fetal products derived from a miscarriage tests karyotypically normal, then by a process of elimination, there would be a strong likelihood of a miscarriage repeating in subsequent pregnancies and one would not have to wait for the disaster to recur before taking action. This is precisely why we strongly advocate that all miscarriage specimens be karyotyped.
There is however one caveat to be taken into consideration. That is that the laboratory performing the karyotyping might unwittingly be testing the mother’s cells rather than that of the conceptus. That is why it is not possible to confidently exclude aneuploidy in cases where karyotyping of products suggests a “chromosomally normal” (euploid) female.
Late pregnancy losses (occurring after completion of the 1st trimester/12th week) occur far less frequently (1%) than early pregnancy losses. They are most commonly due to anatomical abnormalities of the uterus and/or cervix. Weakness of the neck of the cervix rendering it able to act as an effective valve that retains the pregnancy (i.e., cervical incompetence) is in fact one of the commonest causes of late pregnancy loss. So also are developmental (congenital) abnormalities of the uterus (e.g., a uterine septum) and uterine fibroid tumors. In some cases intrauterine growth retardation, premature separation of the placenta (placental abruption), premature rupture of the membranes and premature labor can also causes of late pregnancy loss.
Much progress has been made in understanding the mechanisms involved in RPL. There are two broad categories:
1. Problems involving the uterine environment in which a normal embryo is prohibited from properly implanting and developing. Possible causes include:
• Inadequate thickening of the uterine lining
• Irregularity in the contour of the uterine cavity (polyps, fibroid tumors in the uterine wall, intra-uterine scarring and adenomyosis)
• Hormonal imbalances (progesterone deficiency or luteal phase defects). This most commonly results in occult RPL.
• Deficient blood flow to the uterine lining (thin uterine lining).
• Immunologic implantation dysfunction (IID). A major cause of RPL. Plays a role in 75% of cases where chromosomally normal preimplantation embryos fail to implant.
• Interference of blood supply to the developing conceptus can occur due to a hereditary clotting disorder known as Thrombophilia.

2. Genetic and/or structural chromosomal abnormality of the embryo.Genetic abnormalities are rare causes of RPL. Structural chromosomal abnormalities are slightly more common but are also occur infrequently (1%). These are referred to as unbalanced translocation and they result from part of one chromosome detaching and then fusing with another chromosome. Additionally, a number of studies suggest the existence of paternal (sperm derived) effect on human embryo quality and pregnancy outcome that are not reflected as a chromosomal abnormality. Damaged sperm DNA can have a negative impact on fetal development and present clinically as occult or early clinical miscarriage. The Sperm Chromatin Structure Assay (SCSA) which measures the same endpoints are newer and possibly improved methods for evaluating.

IMMUNOLOGIC IMPLANTATION DYSFUNCTION
Autoimmune IID: Here an immunologic reaction is produced by the individual to his/her body’s own cellular components. The most common antibodies that form in such situations are APA and antithyroid antibodies (ATA).
But it is only when specialized immune cells in the uterine lining, known as cytotoxic lymphocytes (CTL) and natural killer (NK) cells, become activated and start to release an excessive/disproportionate amount of TH-1 cytokines that attack the root system of the embryo, that implantation potential is jeopardized. Diagnosis of such activation requires highly specialized blood test for cytokine activity that can only be performed by a handful of reproductive immunology reference laboratories in the United States.
Alloimmune IID, i.e., where antibodies are formed against antigens derived from another member of the same species, is believed to be a relatively common immunologic cause of recurrent pregnancy loss.
Autoimmune IID is often genetically transmitted. Thus it should not be surprising to learn that it is more likely to exist in women who have a family (or personal) history of primary autoimmune diseases such as lupus erythematosus (LE), scleroderma or autoimmune hypothyroidism (Hashimoto’s disease), autoimmune hyperthyroidism (Grave’s disease), rheumatoid arthritis, etc. Reactionary (secondary) autoimmunity can occur in conjunction with any medical condition associated with widespread tissue damage. One such gynecologic condition is endometriosis. Since autoimmune IID is usually associated with activated NK and T-cells from the outset, it usually results in such very early destruction of the embryo’s root system that the patient does not even recognize that she is pregnant. Accordingly the condition usually presents as “unexplained infertility” or “unexplained IVF failure” rather than as a miscarriage.
Alloimmune IID, on the other hand, usually starts off presenting as unexplained miscarriages (often manifesting as RPL). Over time as NK/T cell activation builds and eventually becomes permanently established the patient often goes from RPL to “infertility” due to failed implantation. RPL is more commonly the consequence of alloimmune rather than autoimmune implantation dysfunction.
However, regardless, of whether miscarriage is due to autoimmune or alloimmune implantation dysfunction the final blow to the pregnancy is the result of activated NK cells and CTL in the uterine lining that damage the developing embryo’s “root system” (trophoblast) so that it can no longer sustain the growing conceptus. This having been said, it is important to note that autoimmune IID is readily amenable to reversal through timely, appropriately administered, selective immunotherapy, and alloimmune IID is not. It is much more difficult to treat successfully, even with the use of immunotherapy. In fact, in some cases the only solution will be to revert to selective immunotherapy plus using donor sperm (provided there is no “match” between the donor’s DQa profile and that of the female recipient) or alternatively to resort to gestational surrogacy.
DIAGNOSING THE CAUSE OF RPL
In the past, women who miscarried were not evaluated thoroughly until they had lost several pregnancies in a row. This was because sporadic miscarriages are most commonly the result of embryo numerical chromosomal irregularities (aneuploidy) and thus not treatable. However, a consecutive series of miscarriages points to a repetitive cause that is non-chromosomal and is potentially remediable. Since RPL is most commonly due to a uterine pathology or immunologic causes that are potentially treatable, it follows that early chromosomal evaluation of products of conception could point to a potentially treatable situation. Thus I strongly recommend that such testing be done in most cases of miscarriage. Doing so will avoid a great deal of unnecessary heartache for many patients.
Establishing the correct diagnosis is the first step toward determining effective treatment for couples with RPL. It results from a problem within the pregnancy itself or within the uterine environment where the pregnancy implants and grows. Diagnostic tests useful in identifying individuals at greater risk for a problem within the pregnancy itself include:

Karyotyping (chromosome analysis) both prospective parents
• Assessment of the karyotype of products of conception derived from previous miscarriage specimens
• Ultrasound examination of the uterine cavity after sterile water is injected or sonohysterogram, fluid ultrasound, etc.)
• Hysterosalpingogram (dye X-ray test)
• Hysteroscopic evaluation of the uterine cavity
• Full hormonal evaluation (estrogen, progesterone, adrenal steroid hormones, thyroid hormones, FSH/LH, etc.)
• Immunologic testing to include:
a) Antiphospholipid antibody (APA) panel
b) Antinuclear antibody (ANA) panel
c) Antithyroid antibody panel (i.e., antithyroglobulin and antimicrosomal antibodies)
d) Reproductive immunophenotype
e) Natural killer cell activity (NKa) assay (i.e., K562 target cell test)
f) Alloimmune testing of both the male and female partners

TREATMENT OF RPL
Treatment for Anatomic Abnormalities of the Uterus: This involves restoration through removal of local lesions such as fibroids, scar tissue, and endometrial polyps or timely insertion of a cervical cerclage (a stitch placed around the neck of the weakened cervix) or the excision of a uterine septum when indicated.
Treatment of Thin Uterine Lining: A thin uterine lining has been shown to correlate with compromised pregnancy outcome. Often this will be associated with reduced blood flow to the endometrium. Such decreased blood flow to the uterus can be improved through treatment with sildenafil and possibly aspirin.
Sildenafil (Viagra) Therapy. Viagra has been used successfully to increase uterine blood flow. However, to be effective it must be administered starting as soon as the period stops up until the day of ovulation and it must be administered vaginally (not orally). Viagra in the form of vaginal suppositories given in the dosage of 25 mg four times a day has been shown to increase uterine blood flow as well as thickness of the uterine lining. To date, we have seen significant improvement of the thickness of the uterine lining in about 70% of women treated. Successful pregnancy resulted in 42% of women who responded to the Viagra. It should be remembered that most of these women had previously experienced repeated IVF failures.
Use of Aspirin: This is an anti-prostaglandin that improves blood flow to the endometrium. It is administered at a dosage of 81 mg orally, daily from the beginning of the cycle until ovulation.

Treating Immunologic Implantation Dysfunction with Selective Immunotherapy: Modalities such as IL/IVIg, heparinoids (Lovenox/Clexane), and corticosteroids (dexamethasone, prednisone, prednisolone) can be used in select cases depending on autoimmune or alloimmune dysfunction.
The Use of IVF in the Treatment of RPL
In the following circumstances, IVF is the preferred option:
1. When in addition to a history of RPL, another standard indication for IVF (e.g., tubal factor, endometriosis, and male factor infertility) is superimposed.
2. In cases where selective immunotherapy is needed to treat an immunologic implantation dysfunction.
The reason for IVF being a preferred approach in such cases is that in order to be effective, the immunotherapy needs to be initiated well before spontaneous or induced ovulation. Given the fact that the anticipated birthrate per cycle of COS with or without IUI is at best about 15%, it follows that short of IVF, to have even a reasonable chance of a live birth, most women with immunologic causes of RPL would need to undergo immunotherapy repeatedly, over consecutive cycles. Conversely, with IVF, the chance of a successful outcome in a single cycle of treatment is several times greater and, because of the attenuated and concentrated time period required for treatment, IVF is far safer and thus represents a more practicable alternative
Since embryo aneuploidy is a common cause of miscarriage, the use of preimplantation genetic diagnosis (PGD), with tests such as CGH, can provide a valuable diagnostic and therapeutic advantage in cases of RPL. PGD requires IVF to provide access to embryos for testing.
There are a few cases of intractable alloimmune dysfunction due to absolute DQ alpha matching where Gestational Surrogacy or use of donor sperm could represent the only viable recourse, other than abandoning treatment altogether and/or resorting to adoption. Other non-immunologic factors such as an intractably thin uterine lining or severe uterine pathology might also warrant that last resort consideration be given to gestational surrogacy.
The good news is that if a couple with RPL is open to all of the diagnostic and treatment options referred to above, a live birthrate of 70%–80% is ultimately achievable.
I strongly recommend that you visit http://www.SherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.
• The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
• Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
• IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
• The Fundamental Requirements For Achieving Optimal IVF Success
• Ovarian Stimulation for IVF using GnRH Antagonists: Comparing the Agonist/Antagonist Conversion Protocol.(A/ACP) With the “Conventional” Antagonist Approach
• Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
• Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
• Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
• The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
• Blastocyst Embryo Transfers Should be the Standard of Care in IVF
• IVF: How Many Attempts should be considered before Stopping?
• “Unexplained” Infertility: Often a matter of the Diagnosis Being Overlooked!
• IVF Failure and Implantation Dysfunction:
• The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID):PART 1-Background
• Immunologic Implantation Dysfunction (IID) & Infertility (IID):PART 2- Making a Diagnosis
• Immunologic Dysfunction (IID) & Infertility (IID):PART 3-Treatment
• Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
• Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management:(Case Report
• Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
• Intralipid (IL) Administration in IVF: It’s Composition; How it Works; Administration; Side-effects; Reactions and Precautions
• Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
• Endometrial Thickness, Uterine Pathology and Immunologic Factors
• Vaginally Administered Viagra is Often a Highly Effective Treatment to Help Thicken a Thin Uterine Lining
• Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
• A personalized, stepwise approach to IVF
• How Many Embryos should be transferred: A Critical Decision in IVF.
• The Role of Nutritional Supplements in Preparing for IVF

______________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
Sheena Swan

Hi Dr Sher, I had a polyp removed in 2016. Would this have been done via a hysteroscopy? Am I correct in thiking that if there were any issues it would have been flagged at the time? Is there any reason to do a repeat hysteroscopy?

reply
Dr. Geoffrey Sher

Yes! However, 2016 was too long ago. You need another evaluation of your uterine cavity by hysteroscopy or sonohysterogram before undergoing another ET.

Good luck!

Geoff Sher

reply
Sheena Swan

Hi Dr Sher, to clarify my earlier question about what your thoughts are on the endo immune biopsy.
My NKC tests shows CD3 and CD19 to be high. My doctor said I will need steroids and intralipids in an FET.

Another doctor had previously suggested doing the endo immune biopsy. Do you still think it is useful to do it if I am already going to be on intralipids? What is the prescription if issues are found? TIA!

reply
Dr. Geoffrey Sher

Very respectfully,

In my opinion, elevated CD3 and CD19 is alone not an indication for Intralipid/steroid therapy. Please see below:

Central to making a diagnosis of an immunologic implantation dysfunction (IID) is a need for the appropriate interpretation of Natural Killer Cell Activity (NKa). In this regard, one of the commonest and most serious errors, is interpret the blood concentration of natural killer cells as being relevant. Rather it is the activity (toxicity) of NK cells that matters as mentioned. This activity can best be measured using the blood, K-562 target cell test (the gold standard). and/ or endometrial biopsy for cytokine activity.
With the K-562 test, the most important consideration is the percentage of target cells “killed” in the “native state”. In most cases a level of >10% killing should be regarded with suspicion and >12% overtly abnormal. In addition to reporting the result of the K-562 test, in the “native state” (without adding, Immunoglobulin-G (IVIG) or Intralipid (IL) which many Laboratories erroneously do to try and determine whether either or both of these immune therapies would have a therapeutic benefit or is/are unlikely to be of clinical value. The entire premise upon which this assertion is based, is in my opinion flawed. Clinically such NK cell deactivation can only be significantly affected in vivo as it takes more than a week following infusion to occur. Thus, what happens to the percentage of target cells killed with the K-562 test, by adding IVIG or IL is in my opinion irrelevant
Another way to assess endometrial NKa is by measuring TH-1 and TH-2 cytokines in endometrial tissue derived through biopsy.TH-1 cytokines kill the trophoblast (the root system of the embryo). Thus if is an excess of TH-1 cytokine activity is found with/without a disruption in the TH-1: TH-2 ratio, this points to NK cell activation.
There are basically two causes of immunologic implantation dysfunction (IID), a) Autoimmune (85%) & , b) Alloimmune (15%). The former occurs when the body reacts to its own tissue and the latter (far less common) when the male and female partners share certain genotypic similarities involving DQ alpha and HLA genes. In both cases IID results in rejection of the pregnancy due to uterine Natural Killer (NK) Cell and T-cell activation leading to the release of an excessive amount of TH-1 cytokines. These, “toxins” attack the embryo’s root system (trophoblast), killing the cells and causing implantation to fail.
Autoimmune Implantation Dysfunction: Autoimmune implantation dysfunction, most commonly presents with presumed “infertility” due to such early pregnancy losses that the woman did not even know she was pregnant in the first place. Sometimes there as an early miscarriage. Tests required are: a) blood levels of all IgA, IgG and IgM-related antiphospholipid antibodies (APA’s) directed against six or seven specific phospholipids, b) both antithyroid antibodies (antithyroid and antimicrosomal antibodies), c) a comprehensive reproductive immunophenotype (RIP) and, c) most importantly, assessment of Natural Killer (NK) cell activity (rather than concentration) by measuring by their killing, using the K-562 target cell test and/or endometrial cytokine activity tests.
It is important to recognize that currently there are only about 3 or 4 Reproductive Immunology Reference Laboratories in the U.S.A that, are capable of reliably analyzing the required elements with a sufficient degree of sensitivity and specificity. I use a Reprosource, a laboratory located in Boston,MA.
Patients with Alloimmune implantation Dysfunction usually present with a history of unexplained (usually repeated) miscarriages or secondary infertility (where the woman conceived initially and thereupon was either unable to conceive again or started having repeated early miscarriages. However, it can also present as “presumed” primary infertility. Alloimmune dysfunction is diagnosed by testing the blood of both the male and female partners for matching DQ alpha genes and NK/CTL activation. It is important to note that any DQ alpha match (partial or complete) will only result in an IID when there both a DQa/HLA match exists along with NK cell activation. With the exception of cases where both partners have a total (absolute DQa match and treatment requires the use of sperm from a non-matching sperm donor, about 90% of cases alloimmune implantation will have a partial match where 1: 2 embryos will match the woman’s DQa genotype and half will not. In cases of an alloimmune dysfunction (with associated NKa), treatment with IL or IVIG will in my opinion, will not protect against a matching embryo being rejected. It can only clear the NK environment for an embryo that does not match the woman’s DQa genotype. For this reason, it is my opinion that only 1 embryo should be transferred at a time because, given the fact that i:2 embryos will match, transferring >1 embryo at a time creates a risk that the matching embryo will evoke a local NKa/’cytokine response that will “muddy the water” for both. Thus, in cases of a “partial” DQa match I recommend against transferring more than a single embryo at a time.

I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

• The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
• Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
• IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation (COS)
• The Fundamental Requirements for Achieving Optimal IVF Success
• Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
• The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 1-Background
• Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 2- Making a Diagnosis
• Immunologic Dysfunction (IID) & Infertility (IID): PART 3-Treatment
• Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID) Why did my IVF Fail
• Recurrent Pregnancy Loss (RPL): Why do I keep losing my Pregnancies
• Genetically Testing Embryos for IVF
• Staggered IVF
• Staggered IVF with PGS- Selection of “Competent” Embryos Greatly Enhances the Utility & Efficiency of IVF.
• Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation
• Preimplantation Genetic Testing (PGS) in IVF: It should be Used Selectively and NOT be Routine.
• IVF: Selecting the Best Quality Embryos to Transfer
• Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
• PGS in IVF: Are Some Chromosomally abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
• Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management 🙁 Case Report)
• Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
• Intralipid (IL) Administration in IVF: It’s Composition; how it Works; Administration; Side-effects; Reactions and Precautions
• Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
• Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
• Should IVF Treatment Cycles be provided uninterrupted or be Conducted in 7-12 Pre-scheduled “Batches” per Year.
• A personalized, stepwise approach to IVF
• Nutritional supplements in IVF
______________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
Sheena Swan

Apologies there was a typo in my question. It is elevated CD19 and CD56 (not 3 and 19). My doctor said I will need steroids and intralipids in an FET.

Another doctor had previously suggested doing the endo immune biopsy. Do you still think it is useful to do it if I am already going to be on intralipids? What is the prescription if issues are found? TIA!

reply
Dr. Geoffrey Sher

I already addressed this post.

Very respectfully, elevated CD19 and CD56 (Nk cells) are not relevant. CD-19 reflects B-lymphocyte activity and NK cell blood concentration is irrelevant. What is needed is the NK cell activity test as measured by the K-562 target cell test or TH-1: TH2 cytokine activity.
Central to making a diagnosis of an immunologic implantation dysfunction (IID) is a need for the appropriate interpretation of Natural Killer Cell Activity (NKa). In this regard, one of the commonest and most serious errors, is interpret the blood concentration of natural killer cells as being relevant. Rather it is the activity (toxicity) of NK cells that matters as mentioned. This activity can best be measured using the blood, K-562 target cell test (the gold standard). and/ or endometrial biopsy for cytokine activity.
With the K-562 test, the most important consideration is the percentage of target cells “killed” in the “native state”. In most cases a level of >10% killing should be regarded with suspicion and >12% overtly abnormal. In addition to reporting the result of the K-562 test, in the “native state” (without adding, Immunoglobulin-G (IVIG) or Intralipid (IL) which many Laboratories erroneously do to try and determine whether either or both of these immune therapies would have a therapeutic benefit or is/are unlikely to be of clinical value. The entire premise upon which this assertion is based, is in my opinion flawed. Clinically such NK cell deactivation can only be significantly affected in vivo as it takes more than a week following infusion to occur. Thus, what happens to the percentage of target cells killed with the K-562 test, by adding IVIG or IL is in my opinion irrelevant
Another way to assess endometrial NKa is by measuring TH-1 and TH-2 cytokines in endometrial tissue derived through biopsy.TH-1 cytokines kill the trophoblast (the root system of the embryo). Thus if is an excess of TH-1 cytokine activity is found with/without a disruption in the TH-1: TH-2 ratio, this points to NK cell activation.
There are basically two causes of immunologic implantation dysfunction (IID), a) Autoimmune (85%) & , b) Alloimmune (15%). The former occurs when the body reacts to its own tissue and the latter (far less common) when the male and female partners share certain genotypic similarities involving DQ alpha and HLA genes. In both cases IID results in rejection of the pregnancy due to uterine Natural Killer (NK) Cell and T-cell activation leading to the release of an excessive amount of TH-1 cytokines. These, “toxins” attack the embryo’s root system (trophoblast), killing the cells and causing implantation to fail.
Autoimmune Implantation Dysfunction: Autoimmune implantation dysfunction, most commonly presents with presumed “infertility” due to such early pregnancy losses that the woman did not even know she was pregnant in the first place. Sometimes there as an early miscarriage. Tests required are: a) blood levels of all IgA, IgG and IgM-related antiphospholipid antibodies (APA’s) directed against six or seven specific phospholipids, b) both antithyroid antibodies (antithyroid and antimicrosomal antibodies), c) a comprehensive reproductive immunophenotype (RIP) and, c) most importantly, assessment of Natural Killer (NK) cell activity (rather than concentration) by measuring by their killing, using the K-562 target cell test and/or endometrial cytokine activity tests.
It is important to recognize that currently there are only about 3 or 4 Reproductive Immunology Reference Laboratories in the U.S.A that, are capable of reliably analyzing the required elements with a sufficient degree of sensitivity and specificity. I use a Reprosource, a laboratory located in Boston,MA.
Patients with Alloimmune implantation Dysfunction usually present with a history of unexplained (usually repeated) miscarriages or secondary infertility (where the woman conceived initially and thereupon was either unable to conceive again or started having repeated early miscarriages. However, it can also present as “presumed” primary infertility. Alloimmune dysfunction is diagnosed by testing the blood of both the male and female partners for matching DQ alpha genes and NK/CTL activation. It is important to note that any DQ alpha match (partial or complete) will only result in an IID when there both a DQa/HLA match exists along with NK cell activation. With the exception of cases where both partners have a total (absolute DQa match and treatment requires the use of sperm from a non-matching sperm donor, about 90% of cases alloimmune implantation will have a partial match where 1: 2 embryos will match the woman’s DQa genotype and half will not. In cases of an alloimmune dysfunction (with associated NKa), treatment with IL or IVIG will in my opinion, will not protect against a matching embryo being rejected. It can only clear the NK environment for an embryo that does not match the woman’s DQa genotype. For this reason, it is my opinion that only 1 embryo should be transferred at a time because, given the fact that i:2 embryos will match, transferring >1 embryo at a time creates a risk that the matching embryo will evoke a local NKa/’cytokine response that will “muddy the water” for both. Thus, in cases of a “partial” DQa match I recommend against transferring more than a single embryo at a time.

I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

• The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
• Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
• IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation (COS)
• The Fundamental Requirements for Achieving Optimal IVF Success
• Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
• The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 1-Background
• Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 2- Making a Diagnosis
• Immunologic Dysfunction (IID) & Infertility (IID): PART 3-Treatment
• Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID) Why did my IVF Fail
• Recurrent Pregnancy Loss (RPL): Why do I keep losing my Pregnancies
• Genetically Testing Embryos for IVF
• Staggered IVF
• Staggered IVF with PGS- Selection of “Competent” Embryos Greatly Enhances the Utility & Efficiency of IVF.
• Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation
• Preimplantation Genetic Testing (PGS) in IVF: It should be Used Selectively and NOT be Routine.
• IVF: Selecting the Best Quality Embryos to Transfer
• Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
• PGS in IVF: Are Some Chromosomally abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
• Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management 🙁 Case Report)
• Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
• Intralipid (IL) Administration in IVF: It’s Composition; how it Works; Administration; Side-effects; Reactions and Precautions
• Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
• Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
• Should IVF Treatment Cycles be provided uninterrupted or be Conducted in 7-12 Pre-scheduled “Batches” per Year.
• A personalized, stepwise approach to IVF
• Nutritional supplements in IVF
______________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
Sheena Swan

Apologies … to clarify my earlier question. I have just realised that my toxicity/activity is high at 22% and 14% (as well as the concentration being high). So does that change your opinion please? Do you think an endo immune biopsy is useful? Will it provide any further information or change course of action given it needs treatment already? TIA

Dr. Geoffrey Sher

With the exception of measuring endometrial cytokines, I do not believe endometrial-immune tests to be useful!

As explained, the value of NK cell activity measurement depends on what specific test was done and which laboratory it was performed at.

Geoff Sher

Sheena Swan

Hi Dr Sher, what are your thoughts on the endo immune biopsy? Do you still need to do it if you have done the NKC tests? What is the prescription if issues are found? TIA!

reply
Karissa

Hello,
I recently found out I am expecting. My HCG level on 11/2 was 94. On 11/4 it was 240. On 11/11 it was 647. Is this okay? It seems like it didn’t rise appropriately

reply
Dr. Geoffrey Sher

That is a very slow rise. Frankly it does not look promising!

Sorry!

Geoff sher

reply
Lynn

Hi Dr. Sher,

I’m wondering if my beta levels are normal or cause for concern:

9dp5dt: 480
11dp5dt: 1070
16dp5dt: 9024

I only transferred one (PGS tested) embryo, I’m excited that the numbers are high and growing but I am concerned that they might be too high since they are over the typical range.

Thank you!
Lynn

reply
Cassidy

Hi Dr. Sher!

I am currently 5w2, and went in for an ultrasound today. We were able to see the gestational sac, yolk sac, and even a flicker of a fetal pole…all in the uterus as confirmed by both doctors.

However, they said there was free fluid in my right tube (the one I ovulated from), which they seemed perplexed by given the babies location in the uterus. This fluid was not there at a US I had five days ago. Any idea what this could be (they didn’t know) and should I be concerned?

I don’t go back for another US for 8 days and that feels like a very long wait, so was hoping you may be able to offer some insight.

reply
Dr. Geoffrey Sher

Sorry about that!

Please re-post your original question and I will respond to the best of my ability!

Geoff Sher

reply
Katia

Hello Dr,
Would you transfer a low mosaic implicating chromosome 16? All i have read on the topic says chromosome 16 is the riskiest (for miscarriage, live birth, and mental / physical development) and shall be avoided. My Dr says the latest studies say otherwise. I am lost!

reply
Dr. Geoffrey Sher

I would transfer it but if in event of pregnancy would follow-up with a CVS or amniocentesis to confirm health of an ensuing pregnancy , allowing the option to terminate a compromised gestation.!

Good luck!

Geoff Sher

reply
Natalia

Progesterone level 2 days before the transfer

Hi Dr. Sher,

This round, my progesterone level is only at 29 three days before embryo transfer. One round they canceled everything when it was at 28. The last 3 rounds it was at 46.

Is my chance of success rater lower with a progesterone level of 29 instead of over 40 three days before transfer?
Which is the most favorable level of progesterone before transfer?

Thanks

reply
Natalia

Uterine lining thickness

Hi Dr. Sher,

I used to have a thickness of uterine lining of 12.5 (three times) and once 14.5. This round it is only a 9.5.

I am wondering which is the most favorable thickness of uterine lining?
I know it must be above 8.

However, what is the most favorable one? Is a 9.5 or 12.5 better?

Thanks

reply
Dr. Geoffrey Sher

Anything above 9mm is optimal. 8-9mm is in the gray zone!

Good luck!

Geoff Sher

reply
sharnee Freebairn

Hi Dr Sher,

I have had 2 misscarriages this year and think I may miscarry again now .

I recently had my HCG levels checked they are as followed

05 nov 21 – 89839
08 Nov 21- 147358
10 Nov 21- 197398

Now my dr told me from the 8th to the 10th my HCG hasn’t doubled and it’s a cause for concern.

I’m not to sure how far along I am as I misscarried on the 15th of sept and think I may have fallen pregnant shortly after.

I would love your opinion.

Kind regards

Sharnee

reply
Dr. Geoffrey Sher

The rate of rise in hCG level will slow down after it exceeds 4000-5000U. I would not be overly concerned at this stage.

Good luck!

Geoff Sher

reply
Julie P

Hi Dr. Sher,

I messaged you about two weeks ago saying that my betas had been low but doubling. At 5 weeks 5 days we saw a gestational sac and yolk sac. At 6 weeks 6 days we saw an empty gestational sac. I’m so confused and upset. Where did the yolk sac go?! I stopped all meds as per doctors recommendation, but almost regret doing so.

reply
Dr. Geoffrey Sher

This could be a technical error. Repeat the US at 7 weeks for a definitive finding!

Good luck!

Geoff Sher

reply
Sheena Swan

Hi Dr Sher, what is your opinion on the menstrual microbiome test vs Emma/Alice? Specifically I am looking at Ferlysis’s test (in Greece).

What is hidden Chlamydia? As it is on another consultant’s list. TIA !

reply
Dr. Geoffrey Sher

I do not use or sanction tests that analyse the menstrual or endometrial microbiome.

Geoff Sher

reply
Shaz I

Dear Dr Sher

I would be grateful if you could shed a brief over view from your experience about weather I should continue pursuing a journey to mother hood
Current age: 35 ( diagnosed with quitelow ovarian reserve at 32)
Husband 37 low sperm count in 3 million range. Has bilateral varicoceles.

1 cycle locally : short protocol menopur/ cetrotide -3rd fet pregnant but miscarriage at 8 weeks
Cycle 2 same protocol- negative
Went to an expensive clinic in London
3rd cycle- flare with immune tested – 2 day 5 blastocysts grade AA led to early pregnancy but miscarriage at 5 weeks
4 th ICSI cycle – flare protocol 5 blastocysts- transfer led to early pregnancy but reduced heart beat and growth at 7 weeks so miscarrying, rest pga tested only 1 normal

I feel devastated and wonder when to decide about the journey. I would not use donor eggs.

Please can you shed some light?

reply
Dr. Geoffrey Sher

Hi Shaz,

I would need much more detailed information to be able to comment authoritatively. I think were should talk. Might I suggest that you contact my assistant , Patti Converse (PH: 702-533-2691 or concierge@sherivf.com) and set up an online consultation with me to discuss.

Whenever a patient fails to achieve a viable pregnancy following embryo transfer (ET), the first question asked is why! Was it simply due to, bad luck?, How likely is the failure to recur in future attempts and what can be done differently, to avoid it happening next time?.
It is an indisputable fact that any IVF procedure is at least as likely to fail as it is to succeed. Thus when it comes to outcome, luck is an undeniable factor. Notwithstanding, it is incumbent upon the treating physician to carefully consider and address the causes of IVF failure before proceeding to another attempt:
1. Age: The chance of a woman under 35Y of age having a baby per embryo transfer is about 35-40%. From there it declines progressively to under 5% by the time she reaches her mid-forties. This is largely due to declining chromosomal integrity of the eggs with advancing age…”a wear and tear effect” on eggs that are in the ovaries from birth.
2. Embryo Quality/”competency (capable of propagating a viable pregnancy)”. As stated, the woman’s age plays a big role in determining egg/embryo quality/”competency”. This having been said, aside from age the protocol used for controlled ovarian stimulation (COS) is the next most important factor. It is especially important when it comes to older women, and women with diminished ovarian reserve (DOR) where it becomes essential to be aggressive, and to customize and individualize the ovarian stimulation protocol.
We used to believe that the uterine environment is more beneficial to embryo development than is the incubator/petri dish and that accordingly, the earlier on in development that embryos are transferred to the uterus, the better. To achieve this goal, we used to select embryos for transfer based upon their day two or microscopic appearance (“grade”). But we have since learned that the further an embryo has advanced in its development, the more likely it is to be “competent” and that embryos failing to reach the expanded blastocyst stage within 5-6 days of being fertilized are almost invariably “incompetent” and are unworthy of being transferred. Moreover, the introduction into clinical practice about 15y ago, (by Levent Keskintepe PhD and myself) of Preimplantation Genetic Sampling (PGS), which assesses for the presence of all the embryos chromosomes (complete chromosomal karyotyping), provides another tool by which to select the most “competent” embryos for transfer. This methodology has selective benefit when it comes to older women, women with DOR, cases of unexplained repeated IVF failure and women who experience recurrent pregnancy loss (RPL).
3. The number of the embryos transferred: Most patients believe that the more embryos transferred the greater the chance of success. To some extent this might be true, but if the problem lies with the use of a suboptimal COS protocol, transferring more embryos at a time won’t improve the chance of success. Nor will the transfer of a greater number of embryos solve an underlying embryo implantation dysfunction (anatomical molecular or immunologic).Moreover, the transfer of multiple embryos, should they implant, can and all too often does result in triplets or greater (high order multiples) which increases the incidence of maternal pregnancy-induced complications and of premature delivery with its serious risks to the newborn. It is for this reason that I rarely recommend the transfer of more than 2 embryos at a time and am moving in the direction of advising single embryo transfers …especially when it comes to transferring embryos derived through the fertilization of eggs from young women.

4. Implantation Dysfunction (ID): Implantation dysfunction is a very common (often overlooked) cause of “unexplained” IVF failure. This is especially the case in young ovulating women who have normal ovarian reserve and have fertile partners. Failure to identify, typify, and address such issues is, in my opinion, an unfortunate and relatively common cause of repeated IVF failure in such women. Common sense dictates that if ultrasound guided embryo transfer is performed competently and yet repeated IVF attempts fail to propagate a viable pregnancy, implantation dysfunction must be seriously considered. Yet ID is probably the most overlooked factor. The most common causes of implantation dysfunction are:

a. A“ thin uterine lining”
b. A uterus with surface lesions in the cavity (polyps, fibroids, scar tissue)
c. Immunologic implantation dysfunction (IID)
d. Endocrine/molecular endometrial receptivity issues
e. Ureaplasma Urealyticum (UU) Infection of cervical mucous and the endometrial lining of the uterus, can sometimes present as unexplained early pregnancy loss or unexplained failure following intrauterine insemination or IVF. The infection can also occur in the man, (prostatitis) and thus can go back and forth between partners, with sexual intercourse. This is the reason why both partners must be tested and if positive, should be treated contemporaneously.
Certain causes of infertility are repetitive and thus cannot readily be reversed. Examples include advanced age of the woman; severe male infertility; immunologic infertility associated with alloimmune implantation dysfunction (especially if it is a “complete DQ alpha genetic match between partners plus uterine natural killer cell activation (NKa).
I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

• The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
• Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
• IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation (COS)
• The Fundamental Requirements for Achieving Optimal IVF Success
• Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
• Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
• Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
• Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
• The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
• Blastocyst Embryo Transfers should be the Standard of Care in IVF
• IVF: How Many Attempts should be considered before Stopping?
• “Unexplained” Infertility: Often a matter of the Diagnosis Being Overlooked!
• IVF Failure and Implantation Dysfunction:
• The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 1-Background
• Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 2- Making a Diagnosis
• Immunologic Dysfunction (IID) & Infertility (IID): PART 3-Treatment
• Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
• Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management 🙁 Case Report)
• Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
• Intralipid (IL) Administration in IVF: It’s Composition; how it Works; Administration; Side-effects; Reactions and Precautions
• Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
• Endometrial Thickness, Uterine Pathology and Immunologic Factors
• Vaginally Administered Viagra is Often a Highly Effective Treatment to Help Thicken a Thin Uterine Lining
• Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
• A personalized, stepwise approach to IVF
• How Many Embryos should be transferred: A Critical Decision in IVF?
______________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
Amanda K

Doctor,

I am just finishing up my first trimester. My husband painted the inside of our house yesterday while I was home, but he had a window open and fan set up to where I couldn’t really even smell it. I didn’t wear a mask and was on the other side of the house. Now I am reading online and hoping this wasn’t harmful for my belly baby!?

reply
Dr. Geoffrey Sher

I doubt there will be any significant effect on the pregnancy!

Good luck!

Geoff Sher

reply
Sheena Swan

Hi Dr Sher, what are your thoughts on urine PdG tests? PdG is short for Pregnanediol Glucuronide, which is the urine metabolite of progesterone.

I am getting some really strange results vs my blood tests :
* CD (Cycle Day) 1 PdG was >15ug/ml. Progesterone blood test was <2nmol/l (0.3 ug/ml).
* CD2 blood tests was 0.9nmol/l (0.14ug/ml). But CD3 PdG is 3ug/ml
* I started taking Estrodial tablets on CD3. Scan showed lining 4.3mm
* CD5 PdG is showing 4.1ug/ml which seems very high.

What could be causing these strange high PdG results? The blood results look correct.

Do you think the PdG tests are inaccurate? Or could my P4 in fact be fluctuating during the follicular phase?

reply
Sheena Swan

Do you have an opinion on the urine PdG tests and it’s accuracy? Or why it would be showing such high values when the blood tests are showing low P4?

reply
Shaz

Dear Dr Sher
Please can you advice in your years of experience if you would recommend further cycles or my chances of having a live birth are slim.
TTC for 4.5 years now. Never natural conception.
I have turned 35 and husband 37. I qas diagnosed with quite a low reserve at 32, normal fsh. Husband has sperm around 3 million ( found to have bilateral varicoceles and doesnt want surgery).

1st icsi cycle- 3rd FET led to missed miscarriage around 8 weeks
2nd icsi cycle – negative
Both were menopur/ cetrotide short protocols.

Changed to an extrmely expensive clinic in london for 3rd icsi. Flare protocol with immunes tested- double blastocyst transfer led to initial positive then early miscarriage before viability scan

4th icsi. Same protocol. 2 day 5 blastocyst transfers. Early miscarriage after initial heart beat seen at 6 weeks
Rest of the 4 blastocysts pgs tested, have 1 normal frozen
When i am about to miscarry or things are going wrong i get an awful feeling of being “hot”. Soon after i find out things have gone wrong
Please advice.

reply
Dr. Geoffrey Sher

I do not consider an AMH of 32pmol/L to be low. It is twice normal (i.e 2 X 15pmol/L).

I think we should talk. Call my assistant, Patti at 702-533-2691 and ask her to set up an online consultation with me. In the interim, see below:

Whenever a patient fails to achieve a viable pregnancy following embryo transfer (ET), the first question asked is why! Was it simply due to, bad luck?, How likely is the failure to recur in future attempts and what can be done differently, to avoid it happening next time?.
It is an indisputable fact that any IVF procedure is at least as likely to fail as it is to succeed. Thus when it comes to outcome, luck is an undeniable factor. Notwithstanding, it is incumbent upon the treating physician to carefully consider and address the causes of IVF failure before proceeding to another attempt:
1. Age: The chance of a woman under 35Y of age having a baby per embryo transfer is about 35-40%. From there it declines progressively to under 5% by the time she reaches her mid-forties. This is largely due to declining chromosomal integrity of the eggs with advancing age…”a wear and tear effect” on eggs that are in the ovaries from birth.
2. Embryo Quality/”competency (capable of propagating a viable pregnancy)”. As stated, the woman’s age plays a big role in determining egg/embryo quality/”competency”. This having been said, aside from age the protocol used for controlled ovarian stimulation (COS) is the next most important factor. It is especially important when it comes to older women, and women with diminished ovarian reserve (DOR) where it becomes essential to be aggressive, and to customize and individualize the ovarian stimulation protocol.
We used to believe that the uterine environment is more beneficial to embryo development than is the incubator/petri dish and that accordingly, the earlier on in development that embryos are transferred to the uterus, the better. To achieve this goal, we used to select embryos for transfer based upon their day two or microscopic appearance (“grade”). But we have since learned that the further an embryo has advanced in its development, the more likely it is to be “competent” and that embryos failing to reach the expanded blastocyst stage within 5-6 days of being fertilized are almost invariably “incompetent” and are unworthy of being transferred. Moreover, the introduction into clinical practice about 15y ago, (by Levent Keskintepe PhD and myself) of Preimplantation Genetic Sampling (PGS), which assesses for the presence of all the embryos chromosomes (complete chromosomal karyotyping), provides another tool by which to select the most “competent” embryos for transfer. This methodology has selective benefit when it comes to older women, women with DOR, cases of unexplained repeated IVF failure and women who experience recurrent pregnancy loss (RPL).
3. The number of the embryos transferred: Most patients believe that the more embryos transferred the greater the chance of success. To some extent this might be true, but if the problem lies with the use of a suboptimal COS protocol, transferring more embryos at a time won’t improve the chance of success. Nor will the transfer of a greater number of embryos solve an underlying embryo implantation dysfunction (anatomical molecular or immunologic).Moreover, the transfer of multiple embryos, should they implant, can and all too often does result in triplets or greater (high order multiples) which increases the incidence of maternal pregnancy-induced complications and of premature delivery with its serious risks to the newborn. It is for this reason that I rarely recommend the transfer of more than 2 embryos at a time and am moving in the direction of advising single embryo transfers …especially when it comes to transferring embryos derived through the fertilization of eggs from young women.

4. Implantation Dysfunction (ID): Implantation dysfunction is a very common (often overlooked) cause of “unexplained” IVF failure. This is especially the case in young ovulating women who have normal ovarian reserve and have fertile partners. Failure to identify, typify, and address such issues is, in my opinion, an unfortunate and relatively common cause of repeated IVF failure in such women. Common sense dictates that if ultrasound guided embryo transfer is performed competently and yet repeated IVF attempts fail to propagate a viable pregnancy, implantation dysfunction must be seriously considered. Yet ID is probably the most overlooked factor. The most common causes of implantation dysfunction are:

a. A“ thin uterine lining”
b. A uterus with surface lesions in the cavity (polyps, fibroids, scar tissue)
c. Immunologic implantation dysfunction (IID)
d. Endocrine/molecular endometrial receptivity issues
e. Ureaplasma Urealyticum (UU) Infection of cervical mucous and the endometrial lining of the uterus, can sometimes present as unexplained early pregnancy loss or unexplained failure following intrauterine insemination or IVF. The infection can also occur in the man, (prostatitis) and thus can go back and forth between partners, with sexual intercourse. This is the reason why both partners must be tested and if positive, should be treated contemporaneously.
Certain causes of infertility are repetitive and thus cannot readily be reversed. Examples include advanced age of the woman; severe male infertility; immunologic infertility associated with alloimmune implantation dysfunction (especially if it is a “complete DQ alpha genetic match between partners plus uterine natural killer cell activation (NKa).
I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

• The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
• Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
• IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation (COS)
• The Fundamental Requirements for Achieving Optimal IVF Success
• Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
• Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
• Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
• Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
• The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
• Blastocyst Embryo Transfers should be the Standard of Care in IVF
• IVF: How Many Attempts should be considered before Stopping?
• “Unexplained” Infertility: Often a matter of the Diagnosis Being Overlooked!
• IVF Failure and Implantation Dysfunction:
• The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 1-Background
• Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 2- Making a Diagnosis
• Immunologic Dysfunction (IID) & Infertility (IID): PART 3-Treatment
• Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
• Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management 🙁 Case Report)
• Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
• Intralipid (IL) Administration in IVF: It’s Composition; how it Works; Administration; Side-effects; Reactions and Precautions
• Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
• Endometrial Thickness, Uterine Pathology and Immunologic Factors
• Vaginally Administered Viagra is Often a Highly Effective Treatment to Help Thicken a Thin Uterine Lining
• Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
• A personalized, stepwise approach to IVF
• How Many Embryos should be transferred: A Critical Decision in IVF?
______________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
Lexi wayne

Sorry, my comments are not posting well. I have a question about my pregnancy. I was seen in the ED last night for severe cramps (mostly at night) onset 2 weeks ago getting worse over last 4-5 days. Suspected I was 7 weeks based on last menstrual cycle calculation. I have had no bleeding but lower back pain, faintness and nausea & hot sweats with the cramps. My HCG was 13,000 and LMP estimated 6 weeks 6 days. ultrasound findings: Uterus: The uterus is anteverted in position and measures 6.4 x 4.7 x 5.3 cm. The myometrium is homogeneous without fibroids. There is a sac-like structure within the endometrium which contains a yolk sac. Mean sac diameter is 11 mm which corresponds to a gestational age of 5 weeks 1 day.
No embryo present on ultrasound
I have minimal pregnancy symptoms but assuming this is because I’m earlier than suspected? Is it normal to diagnose an anembryonic pregnancy this early? Are the night cramps a normal clinical representation of miscarriage?

reply
Dr. Geoffrey Sher

It is too early. Wait 10 days and repeat the US. The cramping could be due to stretching of the suspensory ligaments of the uterus. As long as there is no heavy bleeding…you should be OK!. The hCG level seems good!

Good luck!

Geoff Sher

reply
Stephanie P

You were so kind to answer my question a few weeks ago. I’ve had a few more hcg levels and wondered if you’d give me your honest opinion on my outlook. The rate of increase has slowed down. I’m a little over 6 weeks and will have an ultrasound in a few days but I’m really wanted to be prepared for bad news.

For reference, in my last (healthy normal) pregnancy, my hcg was only 39000 at 7.5 weeks.

Dpo 11 54
Dpo 13 145. 33 hrs to double
Dpo 17 741. 40 hrs
Dpo 20. 2055. 49 hrs
Dpo 24. 4800. 78 hrs
Dpo 27. 8090. 95 hrs to double

reply
Dr. Geoffrey Sher

This is not abnormal, in my opinion.

I would be guardedly optimistic!

Geoff Sher

reply
Ashley O.

Sorry if this repeats!

PMHx: This is pregnancy 5. First was a molar. Middle 3 were healthy pregnancies (minus HG). My LMP was 9/21. I believe I ovulated a week late as I was tracking cervical mucus/LH surges. The week of my missed period, I took some urine tests and they were negative – except for a few hours later there was a faint color line. The time to this decreased over the week and by 10/24 it was showing up within the time frame. 10/25 I went to my OB for right sided pain. My hcg levels over that week were:

10/25 – 81
10/27 – 103
10/29 – 164

10/29 we did an US as my pain had worsened. We found an ovarian cyst. There was no sign of a sac (low numbers). My pain continued until 10/30 and then it has returned to intermittent pain that is not nearly as bad it was.

11/4 – 324

Overall, I am worried about the slow rise in numbers. My count put me at a little over 5 weeks for the 11/4 draw as well and it just doesn’t seem right. What are your thoughts?

reply
Dr. Geoffrey Sher

This is a slow rise. You should prepare yourself for bad news. If the level keeps rising slowly, your doctor should be on the lookout for an ectopic!

Geoff Sher

reply
Ashley Otto

Hx: this is my 5th pregnancy. 1st was molar. Next 3 were live birth and healthy. I do tend to suffer from HG when pregnant.

My LMP was 9/21. I did not ovulate as expected (I was tracking mucus and LH surges). I think I ovulated about a week late. I missed my next cycle (10/19 expected). I took a urine and it was negative. Although hours later a line was there with color. This happened for a week, the hour slowly getting closer to test time frame. By 10/24 I had a light positive within the time frame of the urine test but I started getting intermittent right sided pain. I went to my ob. Over the next week my numbers were:
10/25 – 81 (Progesterone ok)
10/27 – 103
10/29 – 164

The 29th I also had an ultrasound as the pain got worse. They found an ovarian cyst but numbers were too low to see a sac anywhere.
The cyst pain continued into the 30th and since then it has dissolved back to intermittent and not often..

I repeated an hcg on 11/4 and it was 324.

I am worried this is not viable and/or may be ectopic. Looking for your insight.
Thank you ♡

reply
Dr. Geoffrey Sher

I understand your concern. The rise in hCG is slow. Ultimately it will require an US examination at 6-7 weeks to determine pregnancy viability. In addition, your doctor needs to keep an eye on you…just in case it turns out to be an ectopic pregnancy.

Geoff Sher

reply
Angela

Hi Dr. Sher,
I’m 10dp5dt and my HCG levels came back today at 55. Waiting until Monday for another test. Should I be concerned? I was hoping for over 100.
Thank you!

reply
Dr. Geoffrey Sher

It should double in the next 2 days. That will be largely determinative!

Good luck!

Geoff Sher

reply
SK

Hi Dr. Sher,

Is it normal to see a wide variation in hcg doubling time within a cycle? My betas were:

10dp5dt: 316
12dpt: 846 (33 hr doubling time)
14dpt: 1648 (50 hr doubling time)

I know the rate eventually slows down, but this seems like a drastic and early slowdown. I know only the ultrasound will give a definitive answer, but is it usually a bad sign when it slows like this?

reply
Sheena Swan

Hi Dr Sher, what are your thoughts on urine PdG tests? I am getting some really strange results vs my blood tests. For instance today I am on CD3 and the PdG came back high at 3ug/ml whereas yesterday’s blood tests was 0.9nmol/l. Several days ago the PdG was >15ug/ml and the same day blood test was <2nmol/l. What could be causing these strange PdG results?

reply
Dr. Geoffrey Sher

I am not sure I understand what is being measured. What is PdG?

Please explain and re-post this question along with that response.

Geoff Sher

reply
Brittany Little

Hello, I have completed my 2nd frozen embryo transfer on 10/21 ( my first was 2/2019 and resulted in twins). My first beta was 60, 3 days later was 57, I requested a 3rd today and it was 61. They’re giving me the option of continuing meds and repeating a beta Friday or stop meds. I don’t know what is right or if there is any real hope in trying a little longer. What do you think?

reply
Dr. Geoffrey Sher

Sadly, this looks like a failing implantation…a chemical pregnancy!

Sorry!

Geoff sher

reply
Brittany Little

If I told you my beta was 124 today from 61. Would your thoughts change? I’m having a hard time understanding. I know the only way to know is to wait and do another beta and then eventually an ultrasound. How high does your beta need to be to see something on ultrasound? Thanks for your insight.

reply
Dr. Geoffrey Sher

This is a good rise, but it will only be upon visualization through an US at 6-7 weeks that you would have confidence in predicting!

Sorry!

Geoff Sher

reply
Brittany Little

Is 5.5 weeks too early have an ultrasound? Especially with my hcg being low? Everything I’ve read says hcg should be 1,500+ to visualize on ultrasound? I’m wondering if I should request a later date.

Dr. Geoffrey Sher

It is excellent, provided it was measured prior to the first progesterone administration in a medicated cycle.

Geoff Sher

reply
Victoria Norton

Dear Dr Sher

I am 41 years old with an AMH level of 0.4, and FSH level of 9.8, I have had 3 miscarriages at around 8 week in the last 18 months.

I am doing a Duo-cycle and have been taking 300iu Menophur since the 26/11. I had my day 8 scan yesterday,It only showed three follicles 3mm, 10mm, 13mm. This is not much different than I have had on Clomid 125mg where I get around 5 follicles, 1-2 large the rest very small. My clinic wants to go ahead with collection on the 5th November but I’m wondering with so few follicles if I should try NI this month and start a fresh cycle next month.

The clinic plan to freeze any embryos to do PGT from this cycle and start me on medication again 5 days after collection.

Is there likely to be any positive outcome with only two folicules

Thank You

Victoria

reply
Dr. Geoffrey Sher

Might I suggest that you set up an online consultation with me. Call my assistant, Patti Converse at 702-533-2691 and she will arange it. In the meanwhile, please see below:

A. Diminished ovarian reserve:

It is primarily the egg (rather than the sperm) that determines the chromosomal integrity (karyotype) of the embryo, the most important determinant of egg/embryo competency”. A “competent” egg is therefore one that has a normal karyotype and has the best potential to propagate a “competent” embryo. In turn, a “competent embryo is one that possesses the highest potential to implant and develop into a normal, healthy, baby.
When it comes to reproductive performance, humans are the least efficient of all mammals. Even in young women under 35y, at best only 1 out of 2 eggs are chromosomally numerically normal (euploid). The remained have an irregular number of chromosomes (aneuploid) and are thus “incompetent”. The incidence of egg aneuploidy increases with age such by age 39 years, 3 in 4 are competent, and by the mid-forties, less 8 to 9 out of 10 are aneuploid. The fertilization of an aneuploid egg will inevitably lead to embryo aneuploid and an aneuploid embryo cannot propagate a normal pregnancy
Within hours of the spontaneous pre-ovulatory luteinizing hormone (LH) surge, and also following administration of the human chorionic gonadotropin (hCG) “trigger” shot (given to induce ovulation after ovarian stimulation with fertility drugs), the egg embarks on a rapid maturational process that involves halving of its 46 chromosomes to 23. During this process, (known as meiosis) 23 chromosomes are retained within the nucleus of the egg while the remaining (now redundant) 23are expelled, enveloped by a thin membrane. This small structure comes to lie immediately below the “shell” of the egg (the zona pellucida) and is known as the 1st polar body or PB-1. The spermatozoon, in the process of its maturation also undergoes meiosis at which time it too reduces its chromosomes by half. Thus in the process of fertilization the sperm divides into two separate functional gametes, each containing 23 chromosomes such that with subsequent fertilization, the 23 chromosomes in the egg, fuse with the 23 chromosomes of the mature sperm resulting in the development of an embryo that has 46 chromosomes (the normal human genome) comprising a combination of the genetic material from both partners. For the embryo to have exactly 46 chromosomes (the euploid number), both the mature egg and mature spermatozoon must contain exactly 23 chromosomes. Only euploid embryos are “competent” (capable of developing into healthy babies). Those with an irregular number of chromosomes (aneuploid embryos) are “incompetent” and are incapable of developing into healthy babies. While embryo “incompetence” can result from either egg or sperm aneuploidy, it usually stems from egg aneuploidy. However, in cases of moderate or severe male factor infertility, the sperm’s contribution to aneuploidy of the embryo increases significantly.
While embryo ploidy (numerical chromosomal integrity) is not the only determinant of its “competency, it is by far the most important and in fact is rate-limiting factor in human reproduction. It is causal in most cases of “failed implantation” which in turn is responsible for most cases of failed IVF. It causes early miscarriages and is responsible for many chromosomal birth defects such as X-monosomy and Down’s syndrome. . In most cases, embryos that develop too slowly as well as those that grow too fast (i.e. ones that by day 3 post-fertilization comprise fewer than 6 cells or more than 9 cells) and/or embryos that contain a large amount of cell debris or “fragments” are usually aneuploid and are thus “incompetent”. Additionally, embryos that fail to survive in culture to the blastocyst stage are also almost always aneuploid/”incompetent”. At a certain point in the later stage of a woman’s reproductive career, the number of remaining eggs in her ovaries falls below a certain threshold, upon which she is unable to respond optimally to fertility drugs. Often times this is signaled by a rising day 3 blood follicle stimulating hormone (FSH) level. Such women with diminishing ovarian reserve produce fewer eggs in response to ovarian stimulation. While diminished ovarian reserve is most commonly encountered in women over 40 years of age it can and indeed sometimes does occur in much younger women. A few important (but often overlooked concepts should be considered in this regard: 1. Age: It is advancing chronologic age and NOT declining ovarian reserve (as evidenced by abnormal blood AMH or FSH that results in an increased incidence of egg/embryo “incompetence” due to aneuploidy 2. DOR: The ovaries and developing eggs of women with diminished ovarian reserve (regardless of age) are highly susceptible to the adverse effect of excessive Luteinizing Hormone (LH)-induced overproduction of male hormones (mainly testosterone). A little testosterone produced by the ovary promotes normal follicle growth and orderly egg development but too much testosterone has the opposite effect. That is why (especially in women with diminished ovarian reserve who often have high LH and increased ovarian testosterone production , the use of ovarian stimulation protocols that fail to down-regulate LH production prior to initiating stimulation with gonadotropins, often prejudices egg/embryo quality and IVF outcome. Simply stated, while age is certainly the most important factor in determining the incidence of egg/embryo aneuploidy, women with diminished ovarian reserve (regardless of their age), unless they receive customized/individualized protocols of ovarian stimulation are less likely to propagate euploid (competent) eggs/embryos.
Selection of the ideal protocol for controlled ovarian stimulation: While NOTHING can be done to lower the incidence of age related aneuploidy, it is indeed possible to avoid a further increase in egg/embryo aneuploidy by individualizing the protocols of ovarian stimulation used.
• My preferred protocols for women who have relatively normal ovarian reserve:
a) The conventional long pituitary down regulation protocol: BCP are commenced early in the cycle and continued for at least 10 days. Starting 3 days before the BCP is to be discontinued, it is overlapped with an agonist such as Lupron 10U daily for three (3) days and continued until menstruation begins (which should ensue within 5-7 days of stopping the BCP). At that point an US examination is done along with a baseline measurement of blood estradiol to exclude a functional ovarian cyst. Simultaneously, the Lupron dosage is reduced to 5U daily and an FSH-dominant gonadotropin such as Follistim, Puregon or Gonal-f daily is commenced for 2 days. On the 3rd day the gonadotropin dosage is reduced and a small amount of daily menotropin (Menopur 75U daily) is added. Daily ultrasound and blood estradiol measurements are done starting on the 7th or 8th day of gonadotropin administration and continued until daily ultrasound follicle assessments indicate that most follicles have fully developed. At this point egg maturation is “triggered” using an intramuscular injection of 10,000U hCG. And an egg retrieval is scheduled for 36h later.
b) The agonist/antagonist conversion protocol (A/ACOP): This is essentially the same as the conventional long down regulation protocol (as above), except that with the onset of post-BCP menstruation, the agonist is supplanted by daily administration of a GnRH antagonist (e.g. Ganirelix, Cetrotide or Orgalutron) at a dosage of 125mcg daily until the day of the hCG trigger
• My preferred protocol for women who have relatively diminished ovarian reserve (DOR):
When it comes to women who have DOR I favor the use of the A/ACP, adding supplementary human growth hormone (HGH). In some cases where the DOR is regarded as severe, I also augment the process with estrogen priming, preferring twice weekly intramuscular administration of estradiol valerate (Delestrogen), starting with the commencement of antagonist injection and continuing for 1 week before commencing gonadotropins and continued until the hCG “trigger. I further recommend that such women be offered access to preimplantation genetic screening (PGS) for4 embryo selection and in some cases, for embryo banking (stockpiling). This is followed in a later hormone replacement cycle with the selective transfer of up to two (2) PGS-normal, euploid blastocysts. In this way we are able to capitalize on whatever residual ovarian reserve and egg quality might still exist and thereby “make hay while the sun still shines” , significantly enhancing the opportunity to achieve a viable pregnancy
• The following Ovarian stimulation protocols are in my opinion best avoided in women with DOR:
a) Microdose agonist (e.g. Lupron) “flare” protocols
b) High doses of LH/hCG-containing fertility drugs (E.G. Menopur).
c) Protocols that incorporate supplementation with male hormones (e.g. testosterone)
d) Supplementation with DHEA
e) Clomiphene citrate or Letrozole which cause an elevation in LH and thus increase ovarian male hormone (testosterone and androstenedione output.
f) “Triggering” egg maturation using too low a dosage of hCG (e.g. 5,000U rather than 10,000U) or Ovidrel e.g. 250mcg of Ovidrel rather than 500mcg)
g) “Triggering” women who have large numbers of follicles using an agonist such as Lupron, Superfact or Buserelin.
• Preimplantation Genetic Screening (PGS):
The introduction of preimplantation genetic screening (PGS) for the first time permits identification of all the chromosomes in the egg and embryo such that we can now far better identify “competent” (euploid) embryos for selective transfer to the uterus. This vastly improves the efficiency and success of the IVF process. This additional tool has better equipped us to manage cases with DOR. In my opinion, next generation gene sequencing (NGS), currently represents the most reliable method for performing PGS.

B. Recurrent Pregnancy Loss (RPL)

When it comes to reproduction, humans are the poorest performers of all mammals. In fact we are so inefficient that up to 75% of fertilized eggs do not produce live births, and up to 30% of pregnancies end up being lost within 10 weeks of conception (in the first trimester). RPL is defined as two (2) or more failed pregnancies. Less than 5% of women will experience two (2) consecutive miscarriages, and only 1% experience three or more.
Pregnancy loss can be classified by the stage of pregnancy when the loss occurs:
• Early pregnancy loss (first trimester)
• Late pregnancy loss (after the first trimester)
• Occult “hidden” and not clinically recognized, (chemical) pregnancy loss (occurs prior to ultrasound confirmation of pregnancy)
• Early pregnancy losses usually occur sporadically (are not repetitive).

In more than 70% of cases the loss is due to embryo aneuploidy (where there are more or less than the normal quota of 46 chromosomes). Conversely, repeated losses (RPL), with isolated exceptions where the cause is structural (e.g., unbalanced translocations), are seldom attributable to numerical chromosomal abnormalities (aneuploidy). In fact, the vast majority of cases of RPL are attributable to non-chromosomal causes such as anatomical uterine abnormalities or Immunologic Implantation Dysfunction (IID).
Since most sporadic early pregnancy losses are induced by chromosomal factors and thus are non-repetitive, having had a single miscarriage the likelihood of a second one occurring is no greater than average. However, once having had two losses the chance of a third one occurring is double (35-40%) and after having had three losses the chance of a fourth miscarriage increases to about 60%. The reason for this is that the more miscarriages a woman has, the greater is the likelihood of this being due to a non-chromosomal (repetitive) cause such as IID. It follows that if numerical chromosomal analysis (karyotyping) of embryonic/fetal products derived from a miscarriage tests karyotypically normal, then by a process of elimination, there would be a strong likelihood of a miscarriage repeating in subsequent pregnancies and one would not have to wait for the disaster to recur before taking action. This is precisely why we strongly advocate that all miscarriage specimens be karyotyped.
There is however one caveat to be taken into consideration. That is that the laboratory performing the karyotyping might unwittingly be testing the mother’s cells rather than that of the conceptus. That is why it is not possible to confidently exclude aneuploidy in cases where karyotyping of products suggests a “chromosomally normal” (euploid) female.
Late pregnancy losses (occurring after completion of the 1st trimester/12th week) occur far less frequently (1%) than early pregnancy losses. They are most commonly due to anatomical abnormalities of the uterus and/or cervix. Weakness of the neck of the cervix rendering it able to act as an effective valve that retains the pregnancy (i.e., cervical incompetence) is in fact one of the commonest causes of late pregnancy loss. So also are developmental (congenital) abnormalities of the uterus (e.g., a uterine septum) and uterine fibroid tumors. In some cases intrauterine growth retardation, premature separation of the placenta (placental abruption), premature rupture of the membranes and premature labor can also causes of late pregnancy loss.
Much progress has been made in understanding the mechanisms involved in RPL. There are two broad categories:
1. Problems involving the uterine environment in which a normal embryo is prohibited from properly implanting and developing. Possible causes include:
• Inadequate thickening of the uterine lining
• Irregularity in the contour of the uterine cavity (polyps, fibroid tumors in the uterine wall, intra-uterine scarring and adenomyosis)
• Hormonal imbalances (progesterone deficiency or luteal phase defects). This most commonly results in occult RPL.
• Deficient blood flow to the uterine lining (thin uterine lining).
• Immunologic implantation dysfunction (IID). A major cause of RPL. Plays a role in 75% of cases where chromosomally normal preimplantation embryos fail to implant.
• Interference of blood supply to the developing conceptus can occur due to a hereditary clotting disorder known as Thrombophilia.

2. Genetic and/or structural chromosomal abnormality of the embryo.Genetic abnormalities are rare causes of RPL. Structural chromosomal abnormalities are slightly more common but are also occur infrequently (1%). These are referred to as unbalanced translocation and they result from part of one chromosome detaching and then fusing with another chromosome. Additionally, a number of studies suggest the existence of paternal (sperm derived) effect on human embryo quality and pregnancy outcome that are not reflected as a chromosomal abnormality. Damaged sperm DNA can have a negative impact on fetal development and present clinically as occult or early clinical miscarriage. The Sperm Chromatin Structure Assay (SCSA) which measures the same endpoints are newer and possibly improved methods for evaluating.

IMMUNOLOGIC IMPLANTATION DYSFUNCTION
Autoimmune IID: Here an immunologic reaction is produced by the individual to his/her body’s own cellular components. The most common antibodies that form in such situations are APA and antithyroid antibodies (ATA).
But it is only when specialized immune cells in the uterine lining, known as cytotoxic lymphocytes (CTL) and natural killer (NK) cells, become activated and start to release an excessive/disproportionate amount of TH-1 cytokines that attack the root system of the embryo, that implantation potential is jeopardized. Diagnosis of such activation requires highly specialized blood test for cytokine activity that can only be performed by a handful of reproductive immunology reference laboratories in the United States.
Alloimmune IID, i.e., where antibodies are formed against antigens derived from another member of the same species, is believed to be a relatively common immunologic cause of recurrent pregnancy loss.
Autoimmune IID is often genetically transmitted. Thus it should not be surprising to learn that it is more likely to exist in women who have a family (or personal) history of primary autoimmune diseases such as lupus erythematosus (LE), scleroderma or autoimmune hypothyroidism (Hashimoto’s disease), autoimmune hyperthyroidism (Grave’s disease), rheumatoid arthritis, etc. Reactionary (secondary) autoimmunity can occur in conjunction with any medical condition associated with widespread tissue damage. One such gynecologic condition is endometriosis. Since autoimmune IID is usually associated with activated NK and T-cells from the outset, it usually results in such very early destruction of the embryo’s root system that the patient does not even recognize that she is pregnant. Accordingly the condition usually presents as “unexplained infertility” or “unexplained IVF failure” rather than as a miscarriage.
Alloimmune IID, on the other hand, usually starts off presenting as unexplained miscarriages (often manifesting as RPL). Over time as NK/T cell activation builds and eventually becomes permanently established the patient often goes from RPL to “infertility” due to failed implantation. RPL is more commonly the consequence of alloimmune rather than autoimmune implantation dysfunction.
However, regardless, of whether miscarriage is due to autoimmune or alloimmune implantation dysfunction the final blow to the pregnancy is the result of activated NK cells and CTL in the uterine lining that damage the developing embryo’s “root system” (trophoblast) so that it can no longer sustain the growing conceptus. This having been said, it is important to note that autoimmune IID is readily amenable to reversal through timely, appropriately administered, selective immunotherapy, and alloimmune IID is not. It is much more difficult to treat successfully, even with the use of immunotherapy. In fact, in some cases the only solution will be to revert to selective immunotherapy plus using donor sperm (provided there is no “match” between the donor’s DQa profile and that of the female recipient) or alternatively to resort to gestational surrogacy.
DIAGNOSING THE CAUSE OF RPL
In the past, women who miscarried were not evaluated thoroughly until they had lost several pregnancies in a row. This was because sporadic miscarriages are most commonly the result of embryo numerical chromosomal irregularities (aneuploidy) and thus not treatable. However, a consecutive series of miscarriages points to a repetitive cause that is non-chromosomal and is potentially remediable. Since RPL is most commonly due to a uterine pathology or immunologic causes that are potentially treatable, it follows that early chromosomal evaluation of products of conception could point to a potentially treatable situation. Thus I strongly recommend that such testing be done in most cases of miscarriage. Doing so will avoid a great deal of unnecessary heartache for many patients.
Establishing the correct diagnosis is the first step toward determining effective treatment for couples with RPL. It results from a problem within the pregnancy itself or within the uterine environment where the pregnancy implants and grows. Diagnostic tests useful in identifying individuals at greater risk for a problem within the pregnancy itself include:

Karyotyping (chromosome analysis) both prospective parents
• Assessment of the karyotype of products of conception derived from previous miscarriage specimens
• Ultrasound examination of the uterine cavity after sterile water is injected or sonohysterogram, fluid ultrasound, etc.)
• Hysterosalpingogram (dye X-ray test)
• Hysteroscopic evaluation of the uterine cavity
• Full hormonal evaluation (estrogen, progesterone, adrenal steroid hormones, thyroid hormones, FSH/LH, etc.)
• Immunologic testing to include:
a) Antiphospholipid antibody (APA) panel
b) Antinuclear antibody (ANA) panel
c) Antithyroid antibody panel (i.e., antithyroglobulin and antimicrosomal antibodies)
d) Reproductive immunophenotype
e) Natural killer cell activity (NKa) assay (i.e., K562 target cell test)
f) Alloimmune testing of both the male and female partners

TREATMENT OF RPL
Treatment for Anatomic Abnormalities of the Uterus: This involves restoration through removal of local lesions such as fibroids, scar tissue, and endometrial polyps or timely insertion of a cervical cerclage (a stitch placed around the neck of the weakened cervix) or the excision of a uterine septum when indicated.
Treatment of Thin Uterine Lining: A thin uterine lining has been shown to correlate with compromised pregnancy outcome. Often this will be associated with reduced blood flow to the endometrium. Such decreased blood flow to the uterus can be improved through treatment with sildenafil and possibly aspirin.
Sildenafil (Viagra) Therapy. Viagra has been used successfully to increase uterine blood flow. However, to be effective it must be administered starting as soon as the period stops up until the day of ovulation and it must be administered vaginally (not orally). Viagra in the form of vaginal suppositories given in the dosage of 25 mg four times a day has been shown to increase uterine blood flow as well as thickness of the uterine lining. To date, we have seen significant improvement of the thickness of the uterine lining in about 70% of women treated. Successful pregnancy resulted in 42% of women who responded to the Viagra. It should be remembered that most of these women had previously experienced repeated IVF failures.
Use of Aspirin: This is an anti-prostaglandin that improves blood flow to the endometrium. It is administered at a dosage of 81 mg orally, daily from the beginning of the cycle until ovulation.
Treating Immunologic Implantation Dysfunction with Selective Immunotherapy: Modalities such as IL/IVIg, heparinoids (Lovenox/Clexane), and corticosteroids (dexamethasone, prednisone, prednisolone) can be used in select cases depending on autoimmune or alloimmune dysfunction.
The Use of IVF in the Treatment of RPL
In the following circumstances, IVF is the preferred option:
1. When in addition to a history of RPL, another standard indication for IVF (e.g., tubal factor, endometriosis, and male factor infertility) is superimposed.
2. In cases where selective immunotherapy is needed to treat an immunologic implantation dysfunction.
The reason for IVF being a preferred approach in such cases is that in order to be effective, the immunotherapy needs to be initiated well before spontaneous or induced ovulation. Given the fact that the anticipated birthrate per cycle of COS with or without IUI is at best about 15%, it follows that short of IVF, to have even a reasonable chance of a live birth, most women with immunologic causes of RPL would need to undergo immunotherapy repeatedly, over consecutive cycles. Conversely, with IVF, the chance of a successful outcome in a single cycle of treatment is several times greater and, because of the attenuated and concentrated time period required for treatment, IVF is far safer and thus represents a more practicable alternative
Since embryo aneuploidy is a common cause of miscarriage, the use of preimplantation genetic diagnosis (PGD), with tests such as CGH, can provide a valuable diagnostic and therapeutic advantage in cases of RPL. PGD requires IVF to provide access to embryos for testing.
There are a few cases of intractable alloimmune dysfunction due to absolute DQ alpha matching where Gestational Surrogacy or use of donor sperm could represent the only viable recourse, other than abandoning treatment altogether and/or resorting to adoption. Other non-immunologic factors such as an intractably thin uterine lining or severe uterine pathology might also warrant that last resort consideration be given to gestational surrogacy.
The good news is that if a couple with RPL is open to all of the diagnostic and treatment options referred to above, a live birthrate of 70%–80% is ultimately achievable.
I strongly recommend that you visit http://www.SherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.
• The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
• Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
• IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
• The Fundamental Requirements For Achieving Optimal IVF Success
• Ovarian Stimulation for IVF using GnRH Antagonists: Comparing the Agonist/Antagonist Conversion Protocol.(A/ACP) With the “Conventional” Antagonist Approach
• Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
• Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
• Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
• The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
• Blastocyst Embryo Transfers Should be the Standard of Care in IVF
• IVF: How Many Attempts should be considered before Stopping?
• “Unexplained” Infertility: Often a matter of the Diagnosis Being Overlooked!
• IVF Failure and Implantation Dysfunction:
• The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID):PART 1-Background
• Immunologic Implantation Dysfunction (IID) & Infertility (IID):PART 2- Making a Diagnosis
• Immunologic Dysfunction (IID) & Infertility (IID):PART 3-Treatment
• Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
• Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management:(Case Report
• Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
• Intralipid (IL) Administration in IVF: It’s Composition; How it Works; Administration; Side-effects; Reactions and Precautions
• Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
• Endometrial Thickness, Uterine Pathology and Immunologic Factors
• Vaginally Administered Viagra is Often a Highly Effective Treatment to Help Thicken a Thin Uterine Lining
• Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
• A personalized, stepwise approach to IVF
• How Many Embryos should be transferred: A Critical Decision in IVF.
• The Role of Nutritional Supplements in Preparing for IVF

______________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
Sheena Swan

Hi Dr Sher, is ERA for a medicated FET still helpful if you have been pregnant naturally (but miscarried a few times before)…. I know you are not a strong believer in ERA … but in theory if you were to believe in ERA would it still be useful in this scenario?

reply
Dr. Geoffrey Sher

I really cannot answer this reliably because I do not believe ERA is helpful. You need to discuss with your RE!

Sorry!

Geoff Sher

reply
Dr. Geoffrey Sher

The blastocyst and the endometrium are in a constant state of cross-talk. In order for successful implantation to take place, the blastocyst must be at the appropriate stage of development, and needs to signal a well synchronized endometrium to ‘accept it”. This dialogue between embryo and endometrium involves growth factors, cytokines, immunologic accommodations, cell adhesion molecules, and transcription factors. These are all mostly genetically driven but are also heavily influenced by numerous physiologic, pathophysiologic, hormonal and molecular mechanisms capable of profoundly affecting the receptivity of the secretory endometrium to the overtures made by the embryo, to implant.
Embryo implantation takes place 6-9 days after ovulation. This period is commonly referred to as the “window of implantation (WOI)”. In the past it was believed that as long as the embryo reached the uterus in this 4 day time frame, its chance of implanting would not be affected.
In 2013, after evaluating 238 genes in the secretory endometrium and applying bioformatics, Ruiz-Alonzo, et all introduced the Endometrial Receptivity Array (ERA) . Using this test, they categorized mid-secretory endometria into 4 categories: “a) proliferative, b) pre-receptive, c) receptive or d) post-receptive”. They claimed that women with pre-receptive or post-receptive endometria were more likely to experience failed implantation post-embryo transfer (ET).
It was in large part this research which suggested that the concept of a relatively “wide” (4day) WOI, was flawed, that an optimal WOI is likely much narrower and could be a critical factor in determining the success or failure of implantation post-ET. Ruiz-Alonzo also reported that about 25% of women with recurrent IVF failure (RIF), have pre, or post-receptive endometria. They presented data suggesting that viable IVF pregnancy rates could be enhanced,
by deferring FET by about 24 hours in women who had pre-receptive endometria and bringing ET forward by the same amount of time, in women with post-receptive endometria,

There is no doubt that ERA testing has opened the door to an intriguing arena for research. Presently however, available data is inconclusive. Here, following recent studies are 2 dissenting opinions regarding the value for ERA:
• Basil and Casper (2018) state: “Performing the ERA test in a mock cycle prior to a FET does not seem to improve the ongoing pregnancy rate in good prognosis patients. Further large prospective studies are needed to elucidate the role of ERA testing in both good prognosis patients and in patients with recurrent implantation failure”
• Churchill and Comstock (2017) conclude:” In our preliminary observations, the non-receptive ERA group had similar live birth rates compared to the receptive ERA group. It appears the majority of the pregnancies conceived in the non-receptive group occurred during ovulatory cycles and thus a non-receptive ERA in a medicated cycle likely does not have prognostic value for ovulatory cycles. Larger studies are needed to assess the prognostic value of ERA testing in the gen-eral infertility population.”
There are additional negatives that relate to the considerable emotional and financial cost of doing ERA testing:
1. First, the process costs $600-$1000 to undertake
2. , Second, it requires that the patient undergo egg retrieval, vitrify (cryobank) all blastocysts, res for 1 or more cycles to allow their hormonal equilibrium to restore, do an ERA biopsy to determine the synchronicity of the endometrium, wait a few weeks for the results of the test and thereupon engage in undertaking an additional natural or hormonal preparation cycle for timed FET. This represents a significant time lapse, emotional cost and additional expense.
Presently, ERA testing is only advocated for women who have experienced several IVF failures. However, some authorities are beginning to advocate that it become routine for women undergoing all IVF.
The additional financial cost inherent in the performance of the ERA test ($600-$1000), the considerable time delay in getting results, the fact that awaiting results of testing and preparing the patient for FET, of necessity extends the completion of the IVF/ET process by at least a few months, all serve to increase the emotional and financial hardship confronting patients undergoing ERA. Such considerations, coupled with the current absence of conclusive data that confirm efficacy, are arguments against the widespread use of ERA . In my opinion, ERA testing should presently be considered as being one additional diagnostic and be confined to women with “unexplained” RIF.
Gold standard statistical analyses require that all confounding variables be controlled while examining the effect of altering the one under assessment. There is an obvious interplay of numerous, ever changing variables involved in outcome following ET, e.g. embryo competency, anatomical configuration of the uterus and the contour of the endometrial cavity, endometrial thickness, immunologic and molecular factors as well as the very important effect of technical skill/expertise in performing the ET procedure …(to mention but a few). It follows that it is virtually impossible to draw reliable conclusions from IVF-related randomized controlled studies that use outcome as the end-point. This applies equally to results reported following “ gold standard” testing on the efficacy of ERA and, is one of the main reasons why I question the reliability of reported data (positive or negative).
The fact is that IVF (and related technologies) constitute neither a “pure science” nor a “pure art”. Rather they represent an “art-science blend”, where scientific principles applied to longitudinal experience and technical expertise coalesce to produce a biomedical product that will invariably differ (to a greater or lesser degree) from one set of clinical circumstances to another.
Since, the ultimate goal of applied Assisted Reproductive Medicine is to safely achieve the birth of a viable and healthy baby, the tools we apply, that are aimed at achieving this end-point, are honed through the adaptation of scientific principles and concepts, experience and expertise, examined and tested longitudinally over time. Needless to say, the entire IVF/ET process is of necessity subject to change and adaptation as new scientific and technical developments emerge.
This absolutely applies to the ERA as well!

Geoff Sher

reply
Kiran

Dr can endometrium be non receptive at all like it’s never receptive just need to understand

reply
Dr. Geoffrey Sher

It can be t receptive if it is very thin around the time of ovulation, at the time of the “trigger”, or at the time of progeterone therapy being initiated (as with FET).

It was as far back as 1989, when I first published a study that examined the correlation between the thickness of a woman’s uterine lining (the endometrium), and the subsequent successful implantation of embryos in IVF patients. This study revealed that when the uterine lining measured <8mm in thickness by the day of the “hCG trigger” (in fresh IVF cycles), or at the time of initiating progesterone therapy (in embryo recipient cycles, e.g. frozen embryo transfers-FET, egg donation-IVF etc.) , pregnancy and birth rates were substantially improved. Currently, it is my opinion, that an ideal estrogen-promoted endometrial lining should ideally measure at least 9mm in thickness and that an endometrial lining measuring 8-9mm is “intermediate”. An estrogenic lining of <8mm is in most cases unlikely to yield a viable pregnancy.

A “poor” uterine lining is usually the result of the innermost layer of endometrium (the basal or germinal endometrium from which endometrium grows) ) not being able to respond to estrogen by propagating an outer, “functional” layer thick enough to support optimal embryo implantation and development of a healthy placenta (placentation). The “functional” layer ultimately comprises 2/3 of the full endometrial thickness and is the layer that sheds with menstruation in the event that no pregnancy occurs.

The main causes of a “poor” uterine lining are:

1. Damage to the basal endometrium as a result of:
a. Inflammation of the endometrium (endometritis) most commonly resulting from infected products left over following abortion, miscarriage or birth
b. Surgical trauma due to traumatic uterine scraping, (i.e. due to an over-aggressive D & C)
2. Insensitivity of the basal endometrium to estrogen due to:
a. Prolonged , over-use/misuse of clomiphene citrate
b. Prenatal exposure to diethylstilbestrol (DES). This is a drug that was given to pregnant women in the 1960’s to help prevent miscarriage
3. Over-exposure of the uterine lining to ovarian male hormones (mainly testosterone): Older women, women with diminished ovarian reserve (poor responders) and women with polycystic ovarian syndrome -PCOS tend to have raised LH biological activity.. This causes the connective tissue in the ovary (stroma/theca) to overproduce testosterone. The effect can be further exaggerated when certain methods for ovarian stimulation such as agonist (Lupron/Buserelin) “flare” protocols and high dosages of menotropins such as Menopur are used in such cases.
4. Reduced blood flow to the basal endometrium:
Examples include;
a. Multiple uterine fibroids - especially when these are present under the endometrium (submucosal)
b. Uterine adenomyosis (excessive, abnormal invasion of the uterine muscle by endometrial glands).

“The Viagra Connection”

Eighteen years ago years ago, after reporting on the benefit of vaginal Sildenafil (Viagra) for to women who had implantation dysfunction due to thin endometrial linings I was proud to announce the birth of the world’s first “Viagra baby.” Since the introduction of this form of treatment, thousands of women with thin uterine linings have been reported treated and many have gone on to have babies after repeated prior IVF failure.

For those of you who aren’t familiar with the use of Viagra in IVF, allow me to provide some context. It was in the 90’s that Sildenafil (brand named Viagra) started gaining popularity as a treatment for erectile dysfunction. The mechanism by which it acted was through increasing penile blood flow through increasing nitric oxide activity. This prompted me to investigate whether Viagra administered vaginally, might similarly improve uterine blood flow and in the process cause more estrogen to be delivered to the basal endometrium and thereby increase endometrial thickening. We found that when Viagra was administered vaginally it did just that! However oral administration was without any significant benefit in this regard. We enlisted the services of a compound pharmacy to produce vaginal Viagra suppositories. Initially, four (4) women with chronic histories of poor endometrial development and failure to conceive following several advanced fertility treatments were evaluated for a period of 4-6 weeks and then underwent IVF with concomitant Viagra therapy. Viagra suppositories were administered four times daily for 8-11 days and were discontinued 5-7 days prior to embryo transfer in all cases.

Our findings clearly demonstrated that vaginal Viagra produced a rapid and profound improvement in uterine blood flow and that was followed by enhanced endometrial development in all four cases. Three (3) of the four women subsequently conceived. I expanded the trial in 2002 and became the first to report on the administration of vaginal Viagra to 105 women with repeated IVF failure due to persistently thin endometrial linings. All of the women had experienced at least two (2) prior IVF failures attributed to intractably thin uterine linings. About 70% of these women responded to treatment with Viagra suppositories with a marked improvement in endometrial thickness. Forty five percent (45%) achieved live births following a single cycle of IVF treatment with Viagra The miscarriage rate was 9%. None of the women who had failed to show an improvement in endometrial thickness following Viagra treatment achieved viable pregnancies.

Following vaginal administration, Viagra is rapidly absorbed and quickly reaches the uterine blood system in high concentrations. Thereupon it dilutes out as it is absorbed into the systemic circulation. This probably explains why treatment is virtually devoid of systemic side effects

It is important to recognize that Viagra will NOT be effective in improving endometrial thickness in all cases. In fact, about 30%-40% of women treated fail to show any improvement. This is because in certain cases of thin uterine linings, the basal endometrium will have been permanently damaged and left unresponsive to estrogen. This happens in cases of severe endometrial damage due mainly to post-pregnancy endometritis (inflammation), chronic granulomatous inflammation due to uterine tuberculosis (hardly ever seen in the United States) and following extensive surgical injury to the basal endometrium (as sometimes occurs following over-zealous D&C’s).

Combining vaginal Viagra Therapy with oral Terbutaline;
In my practice I sometimes recommend combining Viagra administration with 5mg of oral terbutaline. The Viagra relaxes the muscle walls of uterine spiral arteries that feed the basal (germinal) layer of the endometrium while Terbutaline, relaxes the uterine muscle through which these spiral arteries pass. The combination of these two medications interacts synergistically to maximally enhance blood flow through the uterus, thereby improving estrogen delivery to the endometrial lining. The only drawback in using Terbutaline is that some women experience agitation, tremors and palpitations. In such cases the terbutaline should be discontinued. Terbutaline should also not be used women who have cardiac disease or in those who have an irregular heartbeat.

About 75% of women with thin uterine linings see a positive response to treatment within 2-3 days. The ones that do not respond well to this treatment are those who have severely damaged inner (basal/germinal) endometrial linings, such that no improvement in uterine blood flow can coax an improved response. Such cases are most commonly the result of prior pregnancy-related endometrial inflammation (endometritis) that sometimes occurs post abortally or following infected vaginal and/or cesarean delivery.

Viagra therapy has proven to be a god send to thousands of woman who because of a thin uterine lining would otherwise never have been able to successfully complete the journey “from infertility to family”.

___________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

Patients are encouraged to share the information I provide, with their treating Physicians and/or to avail themselves of my personal hands-on services, provided through batched IVF cycles that I conduct every 3 months at Los Angeles IVF (LAIVF) Clinic, Century City, Los Angeles, CA.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
Caroline O

I’m 41 and 4 years ago had 2 rounds of IVF with ICSI and generated 4x euploid blastocysts – one day 5 4bb and three day 6 4bc, but euploid (out of 7 blasts tested). The 4bb is now our 3 year old son.

Last July I had a chemical pregnancy with one of the 4bc’s. Following this, knowing we only had 2 euploid day 6’s left we opted for ERA test. I was found to be 24 hrs prereceptive.

That brief history brings us to today. I’m in the midst of yet another chemical miscarriage with a euploid blast (this time with the ERA prescribed extra day of progesterone) and a perfect looking 9mm trilaminer lining. The transfer itself was very smooth.
 
Is this simply more bad luck? I was able to get pregnant naturally at the start of 2021 (tragically miscarried after a CVS procedure!).

I’m wondering now about a gestational carrier, or trying another round with my own eggs to produce more euploid embryos. I’m a former PCOS patient but it disappeared. Always been lean, testosterone levels were very high in my youth but now low normal – might DHEA help should we do another round?

Is there anything else we might try please?

Sincere regards,
C.

reply
Dr. Geoffrey Sher

I really think we should talk. Might I suggest you contact my assistant, Patti Converse at 702-533-2691 and set this up!

Whenever a patient fails to achieve a viable pregnancy following embryo transfer (ET), the first question asked is why! Was it simply due to, bad luck?, How likely is the failure to recur in future attempts and what can be done differently, to avoid it happening next time?.
It is an indisputable fact that any IVF procedure is at least as likely to fail as it is to succeed. Thus when it comes to outcome, luck is an undeniable factor. Notwithstanding, it is incumbent upon the treating physician to carefully consider and address the causes of IVF failure before proceeding to another attempt:
1. Age: The chance of a woman under 35Y of age having a baby per embryo transfer is about 35-40%. From there it declines progressively to under 5% by the time she reaches her mid-forties. This is largely due to declining chromosomal integrity of the eggs with advancing age…”a wear and tear effect” on eggs that are in the ovaries from birth.
2. Embryo Quality/”competency (capable of propagating a viable pregnancy)”. As stated, the woman’s age plays a big role in determining egg/embryo quality/”competency”. This having been said, aside from age the protocol used for controlled ovarian stimulation (COS) is the next most important factor. It is especially important when it comes to older women, and women with diminished ovarian reserve (DOR) where it becomes essential to be aggressive, and to customize and individualize the ovarian stimulation protocol.
We used to believe that the uterine environment is more beneficial to embryo development than is the incubator/petri dish and that accordingly, the earlier on in development that embryos are transferred to the uterus, the better. To achieve this goal, we used to select embryos for transfer based upon their day two or microscopic appearance (“grade”). But we have since learned that the further an embryo has advanced in its development, the more likely it is to be “competent” and that embryos failing to reach the expanded blastocyst stage within 5-6 days of being fertilized are almost invariably “incompetent” and are unworthy of being transferred. Moreover, the introduction into clinical practice about 15y ago, (by Levent Keskintepe PhD and myself) of Preimplantation Genetic Sampling (PGS), which assesses for the presence of all the embryos chromosomes (complete chromosomal karyotyping), provides another tool by which to select the most “competent” embryos for transfer. This methodology has selective benefit when it comes to older women, women with DOR, cases of unexplained repeated IVF failure and women who experience recurrent pregnancy loss (RPL).
3. The number of the embryos transferred: Most patients believe that the more embryos transferred the greater the chance of success. To some extent this might be true, but if the problem lies with the use of a suboptimal COS protocol, transferring more embryos at a time won’t improve the chance of success. Nor will the transfer of a greater number of embryos solve an underlying embryo implantation dysfunction (anatomical molecular or immunologic).Moreover, the transfer of multiple embryos, should they implant, can and all too often does result in triplets or greater (high order multiples) which increases the incidence of maternal pregnancy-induced complications and of premature delivery with its serious risks to the newborn. It is for this reason that I rarely recommend the transfer of more than 2 embryos at a time and am moving in the direction of advising single embryo transfers …especially when it comes to transferring embryos derived through the fertilization of eggs from young women.

4. Implantation Dysfunction (ID): Implantation dysfunction is a very common (often overlooked) cause of “unexplained” IVF failure. This is especially the case in young ovulating women who have normal ovarian reserve and have fertile partners. Failure to identify, typify, and address such issues is, in my opinion, an unfortunate and relatively common cause of repeated IVF failure in such women. Common sense dictates that if ultrasound guided embryo transfer is performed competently and yet repeated IVF attempts fail to propagate a viable pregnancy, implantation dysfunction must be seriously considered. Yet ID is probably the most overlooked factor. The most common causes of implantation dysfunction are:

a. A“ thin uterine lining”
b. A uterus with surface lesions in the cavity (polyps, fibroids, scar tissue)
c. Immunologic implantation dysfunction (IID)
d. Endocrine/molecular endometrial receptivity issues
e. Ureaplasma Urealyticum (UU) Infection of cervical mucous and the endometrial lining of the uterus, can sometimes present as unexplained early pregnancy loss or unexplained failure following intrauterine insemination or IVF. The infection can also occur in the man, (prostatitis) and thus can go back and forth between partners, with sexual intercourse. This is the reason why both partners must be tested and if positive, should be treated contemporaneously.
Certain causes of infertility are repetitive and thus cannot readily be reversed. Examples include advanced age of the woman; severe male infertility; immunologic infertility associated with alloimmune implantation dysfunction (especially if it is a “complete DQ alpha genetic match between partners plus uterine natural killer cell activation (NKa).
I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

• The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
• Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
• IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation (COS)
• The Fundamental Requirements for Achieving Optimal IVF Success
• Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
• Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
• Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
• Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
• The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
• Blastocyst Embryo Transfers should be the Standard of Care in IVF
• IVF: How Many Attempts should be considered before Stopping?
• “Unexplained” Infertility: Often a matter of the Diagnosis Being Overlooked!
• IVF Failure and Implantation Dysfunction:
• The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 1-Background
• Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 2- Making a Diagnosis
• Immunologic Dysfunction (IID) & Infertility (IID): PART 3-Treatment
• Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
• Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management 🙁 Case Report)
• Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
• Intralipid (IL) Administration in IVF: It’s Composition; how it Works; Administration; Side-effects; Reactions and Precautions
• Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
• Endometrial Thickness, Uterine Pathology and Immunologic Factors
• Vaginally Administered Viagra is Often a Highly Effective Treatment to Help Thicken a Thin Uterine Lining
• Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
• A personalized, stepwise approach to IVF
• How Many Embryos should be transferred: A Critical Decision in IVF?
______________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
lammy adegboye

Good day
I am a 35 Yr old turning 36 in march I was diagnosed with low ovarian reserve all other parameters healthwise were normal my AMH was 10.3/1.44
My current cycle I was given gonal F 225 for 5 days
Then given cetrotide and Menopur(225)
For another 6 and 5 days respectively I was told to trigger on day 11 night
I ended up with 9 eggs which were size 25,24, 24,24,23,22,22,22 20 on trigger day
I ended up with only two been fertilised of the 9 and not there is no male infertility factor , of the two one made it till day 5 now awaiting biopsy results
Did they wait too long to trigger and do you feel my protocol was adequate

reply
Dr. Geoffrey Sher

Possibly you waited 1 day too long! However, please see below:

Women who (regardless of age) have diminished ovarian reserve (DOR) have a reduced potential for IVF success. Much of this is due to the fact that such women tend to have increased production, and/or biological activity, of LH. This can result in excessive ovarian male hormone (predominantly testosterone) production. This in turn can have a deleterious effect on egg/embryo “competency”.
While it is presently not possible by any means, to reverse the effect of DOR, certain ovarian stimulation regimes, by promoting excessive LH production (e.g. short agonist/Lupron- “flare” protocols, clomiphene and Letrozole), can in my opinion, make matters worse. Similarly, the amount/dosage of certain fertility drugs that contain LH/hCG (e.g. Menopur) can have a negative effect on the development of the eggs of older women and those who have DOR and should be limited.
I try to avoid using such protocols/regimes (especially) in women with DOR, favoring instead the use of the agonist/antagonist conversion protocol (A/ACP), a modified, long pituitary down-regulation regime, augmented by adding supplementary human growth hormone (HGH). I further recommend that such women be offered access to embryo banking of PGS (next generation gene sequencing/NGS)-selected normal blastocysts, the subsequent selective transfer of which by allowing them to capitalize on whatever residual ovarian reserve and egg quality might still exist and thereby “make hay while the sun still shines” could significantly enhance the opportunity to achieve a viable pregnancy
Please visit my new Blog on this very site, www. SherIVF.com, find the “search bar” and type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly

• Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
• IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
• The Fundamental Requirements For Achieving Optimal IVF Success
• Ovarian Stimulation for IVF using GnRH Antagonists: Comparing the Agonist/Antagonist Conversion Protocol.(A/ACP) With the “Conventional” Antagonist Approach
• Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
• The “Biological Clock” and how it should Influence the Selection and Design of Ovarian Stimulation Protocols for IVF.
• A Rational Basis for selecting Controlled Ovarian Stimulation (COS) protocols in women with Diminished Ovarian Reserve (DOR)
• Diagnosing and Treating Infertility due to Diminished Ovarian Reserve (DOR)
• Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
• Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
• The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
• Blastocyst Embryo Transfers Should be the Standard of Care in IVF
• Frozen Embryo Transfer (FET) versus “Fresh” ET: How to Make the Decision
• Frozen Embryo Transfer (FET): A Rational Approach to Hormonal Preparation and How new Methodology is Impacting IVF.
• Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
• Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation.
• Preimplantation Genetic Testing (PGS) in IVF: It Should be Used Selectively and NOT be Routine.
• Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
• PGS in IVF: Are Some Chromosomally Abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
• PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
• Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
• Traveling for IVF from Out of State/Country–
• A personalized, stepwise approach to IVF
• How Many Embryos should be transferred: A Critical Decision in IVF.
• The Role of Nutritional Supplements in Preparing for IVF
• Premature Luteinization (“the premature LH surge): Why it happens and how it can be prevented.
• IVF Egg Donation: A Comprehensive Overview

___________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
Ki

Hello Dr.Sher,

Is prednisone and dexamethasone considered the same and can either be used before frozen embryo transfer.

reply
Dr. Geoffrey Sher

They are both corticosteroids but are not identical. Either can be used.

Geoff Sher

reply
Leeza

Hi Dr. Sher,
Thank you for providing such valuable feedback to those hoping to start a family! I have the following embryos:
Embryo A: +15, +18 abnormal (5 day blastocyst)
Embryo B: -21, abnormal (6 day blastocyst)
Embryo C: -1, mosaic (6 day blastocyst)
Would you recommend transferring any of those?
I am 43, but plan to use a surrogate due to fibroids.

reply
Dr. Geoffrey Sher

Embryo A: +15, +18 abnormal (5 day blastocyst)
Embryo B: -21, abnormal (6 day blastocyst)
Embryo C: -1, mosaic (6 day blastocyst)

I would transfer #s B & C preferentially!

Human embryo development occurs through a process that encompasses reprogramming, sequential cleavage divisions and mitotic chromosome segregation and embryonic genome activation. Chromosomal abnormalities may arise during germ cell and/or preimplantation embryo development and represents a major cause of early pregnancy loss. About a decade ago, I and my associate, Levent Keskintepe PhD were the first to introduce full embryo karyotyping (identification of all 46 chromosomes) through preimplantation genetic sampling (PGS) as a method by which to selectively transfer only euploid embryos (i.e. those that have a full component of chromosomes) to the uterus. We subsequently reported on a 2-3-fold improvement in implantation and birth rates as well as a significant reduction in early pregnancy loss, following IVF. Since then PGS has grown dramatically in popularity such that it is now widely used throughout the world.
Many IVF programs that offer PGS services, require that all participating patients consent to all their aneuploid embryos (i.e. those with an irregular quota of chromosomes) be disposed of. However, growing evidence suggests that following embryo transfer, some aneuploid embryos will in the process of ongoing development, convert to the euploid state (i.e. “autocorrect”) and then go on to develop into chromosomally normal offspring. In fact, I am personally aware of several such cases having occurred in my own practice. So clearly, summarily discarding all aneuploid embryos as a matter of routine we are sometimes destroying some embryos that might otherwise have “autocorrected” and gone on to develop into normal offspring. Thus by discarding aneuploid embryos the possibility exists that we could be denying some women the opportunity of having a baby. This creates a major ethical and moral dilemma for those of us that provide the option of PGS to our patients. On the one hand, we strive “to avoid knowingly doing harm” (the Hippocratic Oath) and as such would prefer to avoid or minimize the risk of miscarriage and/or chromosomal birth defects and on the other hand we would not wish to deny patients with aneuploid embryos, the opportunity to have a baby.
The basis for such embryo “autocorrection” lies in the fact that some embryos found through PGS-karyotyping to harbor one or more aneuploid cells (blastomeres) will often also harbor chromosomally normal (euploid) cells (blastomeres). The coexistence of both aneuploid and euploid cells coexisting in the same embryo is referred to as “mosaicism.”
It is against this background, that an ever-increasing number of IVF practitioners, rather than summarily discard PGS-identified aneuploid embryos are now choosing to cryobanking (freeze-store) certain of them, to leave open the possibility of ultimately transferring them to the uterus. In order to best understand the complexity of the factors involved in such decision making, it is essential to understand the causes of embryo aneuploidy of which there are two varieties:
1. Meiotic aneuploidy” results from aberrations in chromosomal numerical configuration that originate in either the egg (most commonly) and/or in sperm, during preconceptual maturational division (meiosis). Since meiosis occurs in the pre-fertilized egg or in and sperm, it follows that when aneuploidy occurs due to defective meiosis, all subsequent cells in the developing embryo/blastocyst/conceptus inevitably will be aneuploid, precluding subsequent “autocorrection”. Meiotic aneuploidy will thus invariably be perpetuated in all the cells of the embryo as they replicate. It is a permanent phenomenon and is irreversible. All embryos so affected are thus fatally damaged. Most will fail to implant and those that do implant will either be lost in early pregnancy or develop into chromosomally defective offspring (e.g. Down syndrome, Edward syndrome, Turner syndrome).
2. Mitotic aneuploidy (“Mosaicism”) occurs when following fertilization and subsequent cell replication (cleavage), some cells (blastomeres) of a meiotically normal (euploid) early embryo mutate and become aneuploid. This is referred to as “mosaicism”. Thereupon, with continued subsequent cell replication (mitosis) the chromosomal make-up (karyotype) of the embryo might either comprise of predominantly aneuploid cells or euploid cells. The subsequent viability or competency of the conceptus will thereupon depend on whether euploid or aneuploid cells predominate. If in such mosaic embryos aneuploid cells predominate, the embryo will be “incompetent”). If (as is frequently the case) euploid cells prevail, the mosaic embryo will likely be “competent” and capable of propagating a normal conceptus.
Since some mitotically aneuploid (“mosaic”) embryos can, and indeed do “autocorrect’ while meiotically aneuploid embryos cannot, it follows that an ability to reliably differentiate between these two varieties of aneuploidy would potentially be of considerable clinical value. The recent introduction of a variety of preimplantation genetic screening (PGS) known as next generation gene sequencing (NGS) has vastly improved the ability to reliably and accurately karyotype embryos and thus to diagnose embryo “mosaicism”.
Most complex aneuploidies are meiotic in origin and will thus almost invariably fail to propagate viable pregnancies. The ability of mosaic embryos to autocorrect is influenced by stage of embryo development in which the diagnosis is made, which chromosomes are affected, whether the aneuploidy involves a single chromosome (simple) or involves 3 or more chromosomes (complex), and the percentage of cells that are aneuploid. Many embryos diagnosed as being mosaic prior to their development into blastocysts (in the cleaved state), subsequently undergo autocorrection to the euploid state (normal numerical chromosomal configuration) as they develop to blastocysts in the Petri dish. This is one reason why “mosaicism” is more commonly detected in early embryos than in blastocysts. Embryos with segmental mosaic aneuploidies, i.e. the addition (duplication) or subtraction (deletion), are also more likely to autocorrect. Finally, the lower the percentage of mitotically aneuploid (mosaic) cells in the blastocyst the greater the propensity for autocorrection and propagation of chromosomally normal (euploid) offspring. A blastocyst with <30% mosaicism could yield a 30% likelihood of a healthy baby rate with 10-15% miscarriage rate, while with >50% mosaicism the baby rate is roughly halved and the miscarriage rate double.
As stated, the transfer of embryos with autosomal meiotic trisomy, will invariably result in failed implantation, early miscarriage or the birth of a defective child. Those with autosomal mitotic (“mosaic”) trisomies, while having the ability to autocorrect in-utero and result in the birth of a healthy baby can, depending on the percentage of mosaic (mitotically aneuploid) cells present, the number of aneuploid chromosomes and the type of mosaicism (single or segmental) either autocorrect and propagate a normal baby, result in failed implantation, miscarry or cause a birth defect (especially with trisomies 13, 18 or 21). This is why when it comes to giving consideration to transferring trisomic embryos, suspected of being “mosaic”, I advise patients to undergo prenatal genetic testing once pregnant and to be willing to undergo termination of pregnancy in the event of the baby being affected. Conversely, when it comes to meiotic autosomal monosomy, there is almost no chance of a viable pregnancy. in most cases implantation will fail to occur and if it does, the pregnancy will with rare exceptions, miscarry. “Mosaic” (mitotically aneuploid) autosomally monosomic embryos where a chromosome is missing), can and often will “autocorrect” in-utero and propagate a viable pregnancy. It is for this reason that I readily recommend the transfer of such embryos, while still (for safety sake) advising prenatal genetic testing in the event that a pregnancy results.
What should be done with “mosaic embryos? While the ability to identify “mosaicism” through karyotyping of embryos has vastly improved, itv is far from being absolutely reliable. In fact, I personally have witnessed a number of healthy/normal babies born after the transfer of aneuploid embryos, previously reported on as revealing no evidence of “mosaicism”. However, the question arises as to which “mosaic” embryos are capable of autocorrecting in-utero and propagating viable pregnancies. Research suggests that that embryos with autosomal monosomy very rarely will propagate viable pregnancies. Thus, it is in my opinion virtually risk-free to transfer embryos with monosomies involving up to two (2) autosomes. The same applies to the transfer of trisomic embryos where up to 2 autosomes are involved. Only here, there is a risk of birth defects (e.g. trisomy 21/18, etc.) and any resulting pregnancies need to be carefully assessed and if needed/desired, be ended. Regardless, it is essential to make full disclosure to the patient (s), and to ensure the completion of a detailed informed consent agreement which would include a commitment by the patient (s) to undergo prenatal genetic testing (amniocentesis/CVS) aimed at excluding a chromosomal defect in the developing baby and/or a willingness to terminate the pregnancy should a serious birth defect be diagnosed. Blastocysts with aneuploidies involving > 2 autosomes are complex abnormal and should in my opinion, be discarded.
I strongly recommend that you visit http://www.SherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.
• A Fresh Look at the Indications for IVF
• The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
• Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
• IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
• The Fundamental Requirements For Achieving Optimal IVF Success
• Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
• Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
• Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
• Optimizing Response to Ovarian Stimulation in Women with Compromised Ovarian Response to Ovarian Stimulation: A Personal Approach.
• Hereditary Clotting Defects (Thrombophilia)
• Blastocyst Embryo Transfers done 5-6 Days Following Fertilization are Fast Replacing Earlier day 2-3 Transfers of Cleaved Embryos.
• Embryo Transfer Procedure: The “Holy Grail in IVF.
• Timing of ET: Transferring Blastocysts on Day 5-6 Post-Fertilization, Rather Than on Day 2-3 as Cleaved Embryos.
• IVF: Approach to Selecting the Best Embryos for Transfer to the Uterus.
• Fresh versus Frozen Embryo Transfers (FET) Enhance IVF Outcome
• Frozen Embryo Transfer (FET): A Rational Approach to Hormonal Preparation and How new Methodology is Impacting IVF.
• Staggered IVF
• Staggered IVF with PGS- Selection of “Competent” Embryos Greatly Enhances the Utility & Efficiency of IVF.
• Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
• Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation
• Preimplantation Genetic Testing (PGS) in IVF: It should be Used Selectively and NOT be Routine.
• IVF: Selecting the Best Quality Embryos to Transfer
• Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
• PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
• IVF outcome: How Does Advancing Age and Diminished Ovarian Reserve (DOR) Affect Egg/Embryo “Competency” and How Should the Problem be addressed.

___________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
Sheena Swan

Hi Dr Sher, if taking Lovenox and Prednisone during an FET when do you normally start it? What determines when it is started? As some people seem to take it at the beginning and others after transfer

reply
Dr. Geoffrey Sher

In my opinion, it should start 10-14 days prior to anticipated transfer of embryos.

Geoff Sher

reply
Sheena Swan

Thank you. Some clinics advise to start on the day of transfer as they said you don’t need to improve blood flow before the transfer. What difference does it make starting Prednisone and Lovenox on the day of transfer vs before transfer? Why do you advise starting it earlier than transfer?

reply
Dr. Geoffrey Sher

It is not about uterine blood flow alone. The immune system needs to be up-regulated well in advance of the transfer. The turn-over of endometrial immune cells takes several days to effect!

Geoff Sher

reply
Sheena Swan

Thank you … to clarify would you start both Prednisone and Lovenox at the same time?

Julie

Hi Dr. Sher,

On October 7 I transfered a PGS normal day 6 6bb embryo. Betas have been:

9dp6dt 14
11dp6dt 40
13dp6dt 100
18dp6dt 589
21dp6dt 1184

At 21 days they did an US which showed a gestational sac and a yolk sac. When can I feel more relaxed like I’m out of the woods of low betas? Next ultrasound is this Friday 11/5. Nervous!!! My betas were low with my first pregnancy, but started at 70 not 14. Maybe it’s just my body??

Thank you!

reply
Sheena Swan

Hi Dr Sher, further to my question about ERA … does hydroxochloroquine, prednisone, intralipid or dexamethasone need to be replicated and taken during the ERA cycle? Or is it only needed in the FET.

What is dexamethasone or hydroxochloroquine used for in the FET? If taking prednisone, do you still also need dexamethasone or does it do the same thing?

reply
Dr. Geoffrey Sher

I do not prescribe HCQ in IVF, unless the woman is on it for another indication. You would not need both prednisone and dexamethasone. Only one or the other for the transfer.

Geoff Sher.

reply
Sheena Swan

Thank you! Would you need to replicate taking prednisone and intralipid during the ERA cycle too? Or is it only required in the FET

reply
Tara Stiel

I am thinking of freezing my eggs if possible. I am 39 – healthy my OBGYN says all my hormone levels are normal and no indication I am in peri menopause.

reply
Dr. Geoffrey Sher

Respectfully, at 39y, the chance that you would be freezing “competent eggs” is not great. The reason is that after your mid-30’s the percentage of euploid eggs reduces such that at 39y, only about 1:4 or 1: 5 will be “competent”> It is much better to freeze PGS-tested embryos.

Good luck!

Geogg Sher

reply
Ivi

Hi Dr. Sher,

I recently had a failed medicated FET with a very good quality day 6 euploid blastocyst. I had implantation as I got a couple of days of faint positive home pregnancy tests, so it seems likely I had a biochemical pregnancy. I’ve provided my stats and details of my last IVF & FET cycles below. Is there anything about my IVF/FET treatment protocols or results that you think could be improved upon with future IVF/FET cycles? Could the fertilisation rate have been better and is there a way we might be able to improve the number of euploid embryos?

I’m 35 and my partner is 36 years old, and neither of us have any known major fertility issues, although my partner had a slightly low sperm count (13 million sperm per ml) when this was last checked. We’re having IVF to avoid passing on a genetic condition I’m a carrier for.

MY STATS
AMH: 2.1 ng/ml (last checked in August 2020)
AFC: 18
3D SIS scan in February this year showed normal uterine cavity and function.
I have also had the following checked and all were confirmed to be within in normal range: thyroid function, vitamin D and full blood count.
I’ve also gotten pregnant naturally in March 2020, but ended that pregnancy (dilation & evacuation surgical termination at 19 weeks) because after pre-natal testing we found out that the baby was affected with the genetic condition we do not want to pass on.

IVF CYCLE IN APRIL 2021 (short antagonist protocol)
I took a combination of 75IU Meriofert and 150IU Fostimon for a total of 10 days. For the last couple of days of stimulation, the dosage of Meriofert was increased to 150IU, and on day 10 I only took 75IU of Meriofert and 75IU of Fostimon. From days 5 to day 10 of stimulation I took Cetrotide for downregulation. I used a dual trigger of 2000IU Gonasi and 1ml Seprecur. My consultant told me that I had a good response to these medications.
For this IVF cycle I had an AFC of 22, 18 eggs were collected, 14 of these eggs were mature, 9 eggs were fertilised with ICSI and 5 of these became day 6 blastocysts. Of these 5 blastocysts, 1 was confirmed to be euploid, 1 was a low level mosaic and 3 were aneuploid.

MEDICATED FET CYCLE IN JULY 2021
For this I took Cetrotide for 7 days for downregulation and Progynova for 12 days. My lining reached 8.1mm. I then took a combination of Crinone gel (x2 daily), Utrogestan (x3 daily), Lentogest (1 injection daily) and Inhixa (1 injection daily) for a full 5 days. The transfer was on day 6 of me being on progesterone. My progesterone levels were checked on the day of transfer and as my levels were a little low (9.4 ng/ml) I was given Cyclogest 400mg (x3 daily), which increased my progesterone to over 30 ng/ml. This ended in a biochemical pregnancy.

reply
Dr. Geoffrey Sher

Whenever a patient fails to achieve a viable pregnancy following embryo transfer (ET), the first question asked is why! Was it simply due to, bad luck?, How likely is the failure to recur in future attempts and what can be done differently, to avoid it happening next time?.
It is an indisputable fact that any IVF procedure is at least as likely to fail as it is to succeed. Thus when it comes to outcome, luck is an undeniable factor. Notwithstanding, it is incumbent upon the treating physician to carefully consider and address the causes of IVF failure before proceeding to another attempt:
1. Age: The chance of a woman under 35Y of age having a baby per embryo transfer is about 35-40%. From there it declines progressively to under 5% by the time she reaches her mid-forties. This is largely due to declining chromosomal integrity of the eggs with advancing age…”a wear and tear effect” on eggs that are in the ovaries from birth.
2. Embryo Quality/”competency (capable of propagating a viable pregnancy)”. As stated, the woman’s age plays a big role in determining egg/embryo quality/”competency”. This having been said, aside from age the protocol used for controlled ovarian stimulation (COS) is the next most important factor. It is especially important when it comes to older women, and women with diminished ovarian reserve (DOR) where it becomes essential to be aggressive, and to customize and individualize the ovarian stimulation protocol.
We used to believe that the uterine environment is more beneficial to embryo development than is the incubator/petri dish and that accordingly, the earlier on in development that embryos are transferred to the uterus, the better. To achieve this goal, we used to select embryos for transfer based upon their day two or microscopic appearance (“grade”). But we have since learned that the further an embryo has advanced in its development, the more likely it is to be “competent” and that embryos failing to reach the expanded blastocyst stage within 5-6 days of being fertilized are almost invariably “incompetent” and are unworthy of being transferred. Moreover, the introduction into clinical practice about 15y ago, (by Levent Keskintepe PhD and myself) of Preimplantation Genetic Sampling (PGS), which assesses for the presence of all the embryos chromosomes (complete chromosomal karyotyping), provides another tool by which to select the most “competent” embryos for transfer. This methodology has selective benefit when it comes to older women, women with DOR, cases of unexplained repeated IVF failure and women who experience recurrent pregnancy loss (RPL).
3. The number of the embryos transferred: Most patients believe that the more embryos transferred the greater the chance of success. To some extent this might be true, but if the problem lies with the use of a suboptimal COS protocol, transferring more embryos at a time won’t improve the chance of success. Nor will the transfer of a greater number of embryos solve an underlying embryo implantation dysfunction (anatomical molecular or immunologic).Moreover, the transfer of multiple embryos, should they implant, can and all too often does result in triplets or greater (high order multiples) which increases the incidence of maternal pregnancy-induced complications and of premature delivery with its serious risks to the newborn. It is for this reason that I rarely recommend the transfer of more than 2 embryos at a time and am moving in the direction of advising single embryo transfers …especially when it comes to transferring embryos derived through the fertilization of eggs from young women.

4. Implantation Dysfunction (ID): Implantation dysfunction is a very common (often overlooked) cause of “unexplained” IVF failure. This is especially the case in young ovulating women who have normal ovarian reserve and have fertile partners. Failure to identify, typify, and address such issues is, in my opinion, an unfortunate and relatively common cause of repeated IVF failure in such women. Common sense dictates that if ultrasound guided embryo transfer is performed competently and yet repeated IVF attempts fail to propagate a viable pregnancy, implantation dysfunction must be seriously considered. Yet ID is probably the most overlooked factor. The most common causes of implantation dysfunction are:

a. A“ thin uterine lining”
b. A uterus with surface lesions in the cavity (polyps, fibroids, scar tissue)
c. Immunologic implantation dysfunction (IID)
d. Endocrine/molecular endometrial receptivity issues
e. Ureaplasma Urealyticum (UU) Infection of cervical mucous and the endometrial lining of the uterus, can sometimes present as unexplained early pregnancy loss or unexplained failure following intrauterine insemination or IVF. The infection can also occur in the man, (prostatitis) and thus can go back and forth between partners, with sexual intercourse. This is the reason why both partners must be tested and if positive, should be treated contemporaneously.
Certain causes of infertility are repetitive and thus cannot readily be reversed. Examples include advanced age of the woman; severe male infertility; immunologic infertility associated with alloimmune implantation dysfunction (especially if it is a “complete DQ alpha genetic match between partners plus uterine natural killer cell activation (NKa).
I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

• The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
• Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
• IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation (COS)
• The Fundamental Requirements for Achieving Optimal IVF Success
• Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
• Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
• Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
• Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
• The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
• Blastocyst Embryo Transfers should be the Standard of Care in IVF
• IVF: How Many Attempts should be considered before Stopping?
• “Unexplained” Infertility: Often a matter of the Diagnosis Being Overlooked!
• IVF Failure and Implantation Dysfunction:
• The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 1-Background
• Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 2- Making a Diagnosis
• Immunologic Dysfunction (IID) & Infertility (IID): PART 3-Treatment
• Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
• Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management 🙁 Case Report)
• Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
• Intralipid (IL) Administration in IVF: It’s Composition; how it Works; Administration; Side-effects; Reactions and Precautions
• Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
• Endometrial Thickness, Uterine Pathology and Immunologic Factors
• Vaginally Administered Viagra is Often a Highly Effective Treatment to Help Thicken a Thin Uterine Lining
• Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
• A personalized, stepwise approach to IVF
• How Many Embryos should be transferred: A Critical Decision in IVF?
______________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
Lara

Hello, I had a 5-day frozen double embryo transfer and am very worried about my beta values so far, I was wondering if I could have your opinion? My clinic does not test HCG at all and so I had to do these myself.
11 days past transfer: 62
13 days past transfer: 95
15 days past transfer: 259
Each test was 48 hours apart. My values seem very low, and had a bad start (the doubling time between the first two was 76 hours!). But seems to have got better (doubling between second two is 33 hours). I will do another test 48 hours from last. Should I be optimistic or pessimistic in your opinion? It seems low and erratic…

reply
Dr. Geoffrey Sher

Hi lara,

Only time will tell. Ultimately , only an US atb 6-7 weeks will give a clear and definitive answer.

Sorry!

Geoff Sher

reply
Sue Alex

Hello Dr Sher (sorry reposting here as posted in wrong page previously)
Firstly thank you for you blog and your responses – they are a wealth of information.
I am planning to book a consult with you but will need to work out our time differences!

I am a recent 35 yo otherwise healthy BMI 22 with an amh 5 and a previous R) ectopic/salpingectomy. Natural conception but miscarried at 7 weeks in sept 2020, remaining L) tube clear. IU fibroid removed june 2021.
In august 2021 I had my first antagonist cycle
Day 3-11 300units gonadal F,
day 6 – 11 cetrotide added
Day 9 US showed 4 follicles >16mm
Day 11 pm 250mcg ovidrel 36 hours prior .
Day 13 no eggs retrieved on aspiration (was told hormonal levels were all within normal range, follicle HCG normal.

Second cycle oct 2021
Day 2 -13 – 350units Gonadal F
Day 6 – 13 cetrotide
Day 9 – 12 – 4 mature follicles, largest 20mm
Day 13 pm – Decepeptyl 0.2 + ovidrel 250mcg
Day 15 am – no eggs again

I did a urinary ovulation (LH) test day 15 and 16 and it was still positive.
I am medical/surgical resident and have read that sometimes an earlier trigger (GNRHa at 40h) + HCG at 36h have been successful. I am uncertain of my baseline serum LH and FSH, but I was told that my hormone levels were all as expected with nothing out of the ordinary.

Through your responses here, it would seem that a downregulation of LH via the long agonist protocol followed by a modified antagonist protocol with early introduction of cetrotide and human growth hormone and a double ovidrel trigger may be the way to go?

My FS (in Australia) recommended we try falling pregnant naturally as I had a natural accidental conception in late 2021 but I am wary of my low AMH and had hoped the IVF would be useful for embryo banking for number 2 but also enough for our first child.

Thank you so much!

reply
Dr. Geoffrey Sher

A: Why did IVF Fail?

Whenever a patient fails to achieve a viable pregnancy following embryo transfer (ET), the first question asked is why! Was it simply due to, bad luck?, How likely is the failure to recur in future attempts and what can be done differently, to avoid it happening next time?.
It is an indisputable fact that any IVF procedure is at least as likely to fail as it is to succeed. Thus when it comes to outcome, luck is an undeniable factor. Notwithstanding, it is incumbent upon the treating physician to carefully consider and address the causes of IVF failure before proceeding to another attempt:
1. Age: The chance of a woman under 35Y of age having a baby per embryo transfer is about 35-40%. From there it declines progressively to under 5% by the time she reaches her mid-forties. This is largely due to declining chromosomal integrity of the eggs with advancing age…”a wear and tear effect” on eggs that are in the ovaries from birth.
2. Embryo Quality/”competency (capable of propagating a viable pregnancy)”. As stated, the woman’s age plays a big role in determining egg/embryo quality/”competency”. This having been said, aside from age the protocol used for controlled ovarian stimulation (COS) is the next most important factor. It is especially important when it comes to older women, and women with diminished ovarian reserve (DOR) where it becomes essential to be aggressive, and to customize and individualize the ovarian stimulation protocol.
We used to believe that the uterine environment is more beneficial to embryo development than is the incubator/petri dish and that accordingly, the earlier on in development that embryos are transferred to the uterus, the better. To achieve this goal, we used to select embryos for transfer based upon their day two or microscopic appearance (“grade”). But we have since learned that the further an embryo has advanced in its development, the more likely it is to be “competent” and that embryos failing to reach the expanded blastocyst stage within 5-6 days of being fertilized are almost invariably “incompetent” and are unworthy of being transferred. Moreover, the introduction into clinical practice about 15y ago, (by Levent Keskintepe PhD and myself) of Preimplantation Genetic Sampling (PGS), which assesses for the presence of all the embryos chromosomes (complete chromosomal karyotyping), provides another tool by which to select the most “competent” embryos for transfer. This methodology has selective benefit when it comes to older women, women with DOR, cases of unexplained repeated IVF failure and women who experience recurrent pregnancy loss (RPL).
3. The number of the embryos transferred: Most patients believe that the more embryos transferred the greater the chance of success. To some extent this might be true, but if the problem lies with the use of a suboptimal COS protocol, transferring more embryos at a time won’t improve the chance of success. Nor will the transfer of a greater number of embryos solve an underlying embryo implantation dysfunction (anatomical molecular or immunologic).Moreover, the transfer of multiple embryos, should they implant, can and all too often does result in triplets or greater (high order multiples) which increases the incidence of maternal pregnancy-induced complications and of premature delivery with its serious risks to the newborn. It is for this reason that I rarely recommend the transfer of more than 2 embryos at a time and am moving in the direction of advising single embryo transfers …especially when it comes to transferring embryos derived through the fertilization of eggs from young women.

4. Implantation Dysfunction (ID): Implantation dysfunction is a very common (often overlooked) cause of “unexplained” IVF failure. This is especially the case in young ovulating women who have normal ovarian reserve and have fertile partners. Failure to identify, typify, and address such issues is, in my opinion, an unfortunate and relatively common cause of repeated IVF failure in such women. Common sense dictates that if ultrasound guided embryo transfer is performed competently and yet repeated IVF attempts fail to propagate a viable pregnancy, implantation dysfunction must be seriously considered. Yet ID is probably the most overlooked factor. The most common causes of implantation dysfunction are:

a. A“ thin uterine lining”
b. A uterus with surface lesions in the cavity (polyps, fibroids, scar tissue)
c. Immunologic implantation dysfunction (IID)
d. Endocrine/molecular endometrial receptivity issues
e. Ureaplasma Urealyticum (UU) Infection of cervical mucous and the endometrial lining of the uterus, can sometimes present as unexplained early pregnancy loss or unexplained failure following intrauterine insemination or IVF. The infection can also occur in the man, (prostatitis) and thus can go back and forth between partners, with sexual intercourse. This is the reason why both partners must be tested and if positive, should be treated contemporaneously.
Certain causes of infertility are repetitive and thus cannot readily be reversed. Examples include advanced age of the woman; severe male infertility; immunologic infertility associated with alloimmune implantation dysfunction (especially if it is a “complete DQ alpha genetic match between partners plus uterine natural killer cell activation (NKa).

B. Why no eggs retrieved?

Frequently, when following vigorous and often repeated flushing of follicles at egg retrieval they fail to yield eggs, it is ascribed to “Empty Follicle Syndrome.” This is a gross misnomer, because all follicles contain eggs. So why were no eggs retrieved from the follicles? Most likely it was because they would/could not yield the eggs they harbored.
This situation is most commonly seen in older women, women who have severely diminished ovarian reserve, and in women with polycystic ovarian syndrome (PCOS). In my opinion it is often preventable when an optimal, individualized and strategic protocol for controlled ovarian stimulation (COS) is employed and the correct timing and dosage is applied to the “hCG trigger shot.”
Normally, following optimal ovarian stimulation, the hCG “trigger shot” is given for the purpose of it triggering meiosis (reproductive division) that is intended to halve the number of chromosomes from 46 to 23 within 32-36 hours. The hCG trigger also enables the egg to signal the “cumulus cells” that bind it firmly to the inner wall of the follicle (through enzymatic activity), to loosen or disperse, so that the egg can detach and readily be captured at egg retrieval (ER).
Ordinarily, normal eggs (and even those with only one or two chromosomal irregularities) will readily detach and be captured with the very first attempt to empty a follicle. Eggs that have several chromosomal numerical abnormalities (i.e., are “complex aneuploid”) are often unable to facilitate this process. This explains why when the egg is complex aneuploid, its follicle will not yield an egg…and why, when it requires repeated flushing of a follicle to harvest an egg, it is highly suggestive of it being aneuploid and thus “incompetent” (i.e., incapable of subsequently propagating a normal embryo).
Older women, women with diminished ovarian reserve, and those with polycystic ovarian syndrome, tend to have more biologically active LH in circulation. LH causes production of male hormone (androgens, predominantly testosterone), by ovarian connective tissue (stroma/theca). A little testosterone is needed for optimal follicle development and for FSH-induced ovogenesis (egg development). Too much LH activity compromises the latter, and eggs so affected are far more likely to be aneuploid following meiosis.
Women with the above conditions have increased LH activity and are thus more likely to produce excessive ovarian testosterone. It follows that sustained, premature elevations in LH or premature luteinization (often referred to as a “premature LH surge”) will prejudice egg development. Such compromised eggs are much more likely to end up being complex aneuploid following the administration of the hCG trigger, leading to fruitless attempts at retrieval and the so called “empty follicle syndrome.”
The developing eggs of women who have increased LH activity (older women, women with diminished ovarian reserve, and those with PCOS) are inordinately vulnerable to the effects of protracted exposure to LH-induced ovarian testosterone. Because of this, the administration of medications that provoke further pituitary LH release (e.g., clomiphene and Letrozole), drugs that contain LH or hCG (e.g., Menopur), or protocols of ovarian stimulation that provoke increased exposure to the woman’s own pituitary LH (e.g., “flare-agonist protocols”) and the use of “late pituitary blockade” (antagonist) protocols can be prejudicial.
The importance of individualizing COS protocol selection, precision with regard to the dosage and type of hCG trigger used, and the timing of its administration in such cases cannot be overstated. The ideal dosage of urinary-derived hCG (hCG-u) such as Novarel, Pregnyl and Profasi is 10,000U. When recombinant DNA-derived hCG (hCG-r) such as Ovidrel is used, the optimal dosage is 500mcg. A lower dosage of hCG can, by compromising meiosis, increase the risk of egg aneuploidy, and thus of IVF outcome.
There is in my opinion no such condition as “Empty Follicle Syndrome.” All follicles contain eggs. Failure to access those eggs at ER can often be a result of the protocol used for controlled ovarian stimulation.

I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

• The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
• Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
• IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation (COS)
• The Fundamental Requirements for Achieving Optimal IVF Success
• Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
• Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
• Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
• Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
• The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
• Blastocyst Embryo Transfers should be the Standard of Care in IVF
• IVF: How Many Attempts should be considered before Stopping?
• “Unexplained” Infertility: Often a matter of the Diagnosis Being Overlooked!
• IVF Failure and Implantation Dysfunction:
• The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 1-Background
• Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 2- Making a Diagnosis
• Immunologic Dysfunction (IID) & Infertility (IID): PART 3-Treatment
• Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
• Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management 🙁 Case Report)
• Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
• Intralipid (IL) Administration in IVF: It’s Composition; how it Works; Administration; Side-effects; Reactions and Precautions
• Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
• Endometrial Thickness, Uterine Pathology and Immunologic Factors
• Vaginally Administered Viagra is Often a Highly Effective Treatment to Help Thicken a Thin Uterine Lining
• Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
• A personalized, stepwise approach to IVF
• How Many Embryos should be transferred: A Critical Decision in IVF?
______________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
Natasha

Hello Dr Sher,

I had FET 6AB embryo transfer on 10/17/21.
My beta HCG 9dpt was 114
11dpt (exactly 48 hr after) 305
However my TSH level was very low : 0.286 (twice below the minimum margin)
My doctor told me there is no further blood test required and I should come back at6- 7 weeks for US exam and my TSH will be checked then again. He said there is no reason to be concerned as long as its not high. Please advise if I should do something else while waiting for an US.

Thank you very much!

reply
Sheena Swan

Hi Dr Sher, what tests/medication would you recommend for someone who has had several miscarriages and only a limited number of embryos? I can’t do any more IVF cycles so need to check everything before my next FETs. Thanks so much in advance!

reply
Dr. Geoffrey Sher

When it comes to reproduction, humans are the poorest performers of all mammals. In fact we are so inefficient that up to 75% of fertilized eggs do not produce live births, and up to 30% of pregnancies end up being lost within 10 weeks of conception (in the first trimester). RPL is defined as two (2) or more failed pregnancies. Less than 5% of women will experience two (2) consecutive miscarriages, and only 1% experience three or more.
Pregnancy loss can be classified by the stage of pregnancy when the loss occurs:
• Early pregnancy loss (first trimester)
• Late pregnancy loss (after the first trimester)
• Occult “hidden” and not clinically recognized, (chemical) pregnancy loss (occurs prior to ultrasound confirmation of pregnancy)
• Early pregnancy losses usually occur sporadically (are not repetitive).

In more than 70% of cases the loss is due to embryo aneuploidy (where there are more or less than the normal quota of 46 chromosomes). Conversely, repeated losses (RPL), with isolated exceptions where the cause is structural (e.g., unbalanced translocations), are seldom attributable to numerical chromosomal abnormalities (aneuploidy). In fact, the vast majority of cases of RPL are attributable to non-chromosomal causes such as anatomical uterine abnormalities or Immunologic Implantation Dysfunction (IID).
Since most sporadic early pregnancy losses are induced by chromosomal factors and thus are non-repetitive, having had a single miscarriage the likelihood of a second one occurring is no greater than average. However, once having had two losses the chance of a third one occurring is double (35-40%) and after having had three losses the chance of a fourth miscarriage increases to about 60%. The reason for this is that the more miscarriages a woman has, the greater is the likelihood of this being due to a non-chromosomal (repetitive) cause such as IID. It follows that if numerical chromosomal analysis (karyotyping) of embryonic/fetal products derived from a miscarriage tests karyotypically normal, then by a process of elimination, there would be a strong likelihood of a miscarriage repeating in subsequent pregnancies and one would not have to wait for the disaster to recur before taking action. This is precisely why we strongly advocate that all miscarriage specimens be karyotyped.
There is however one caveat to be taken into consideration. That is that the laboratory performing the karyotyping might unwittingly be testing the mother’s cells rather than that of the conceptus. That is why it is not possible to confidently exclude aneuploidy in cases where karyotyping of products suggests a “chromosomally normal” (euploid) female.
Late pregnancy losses (occurring after completion of the 1st trimester/12th week) occur far less frequently (1%) than early pregnancy losses. They are most commonly due to anatomical abnormalities of the uterus and/or cervix. Weakness of the neck of the cervix rendering it able to act as an effective valve that retains the pregnancy (i.e., cervical incompetence) is in fact one of the commonest causes of late pregnancy loss. So also are developmental (congenital) abnormalities of the uterus (e.g., a uterine septum) and uterine fibroid tumors. In some cases intrauterine growth retardation, premature separation of the placenta (placental abruption), premature rupture of the membranes and premature labor can also causes of late pregnancy loss.
Much progress has been made in understanding the mechanisms involved in RPL. There are two broad categories:
1. Problems involving the uterine environment in which a normal embryo is prohibited from properly implanting and developing. Possible causes include:
• Inadequate thickening of the uterine lining
• Irregularity in the contour of the uterine cavity (polyps, fibroid tumors in the uterine wall, intra-uterine scarring and adenomyosis)
• Hormonal imbalances (progesterone deficiency or luteal phase defects). This most commonly results in occult RPL.
• Deficient blood flow to the uterine lining (thin uterine lining).
• Immunologic implantation dysfunction (IID). A major cause of RPL. Plays a role in 75% of cases where chromosomally normal preimplantation embryos fail to implant.
• Interference of blood supply to the developing conceptus can occur due to a hereditary clotting disorder known as Thrombophilia.

2. Genetic and/or structural chromosomal abnormality of the embryo.Genetic abnormalities are rare causes of RPL. Structural chromosomal abnormalities are slightly more common but are also occur infrequently (1%). These are referred to as unbalanced translocation and they result from part of one chromosome detaching and then fusing with another chromosome. Additionally, a number of studies suggest the existence of paternal (sperm derived) effect on human embryo quality and pregnancy outcome that are not reflected as a chromosomal abnormality. Damaged sperm DNA can have a negative impact on fetal development and present clinically as occult or early clinical miscarriage. The Sperm Chromatin Structure Assay (SCSA) which measures the same endpoints are newer and possibly improved methods for evaluating.

IMMUNOLOGIC IMPLANTATION DYSFUNCTION
Autoimmune IID: Here an immunologic reaction is produced by the individual to his/her body’s own cellular components. The most common antibodies that form in such situations are APA and antithyroid antibodies (ATA).
But it is only when specialized immune cells in the uterine lining, known as cytotoxic lymphocytes (CTL) and natural killer (NK) cells, become activated and start to release an excessive/disproportionate amount of TH-1 cytokines that attack the root system of the embryo, that implantation potential is jeopardized. Diagnosis of such activation requires highly specialized blood test for cytokine activity that can only be performed by a handful of reproductive immunology reference laboratories in the United States.
Alloimmune IID, i.e., where antibodies are formed against antigens derived from another member of the same species, is believed to be a relatively common immunologic cause of recurrent pregnancy loss.
Autoimmune IID is often genetically transmitted. Thus it should not be surprising to learn that it is more likely to exist in women who have a family (or personal) history of primary autoimmune diseases such as lupus erythematosus (LE), scleroderma or autoimmune hypothyroidism (Hashimoto’s disease), autoimmune hyperthyroidism (Grave’s disease), rheumatoid arthritis, etc. Reactionary (secondary) autoimmunity can occur in conjunction with any medical condition associated with widespread tissue damage. One such gynecologic condition is endometriosis. Since autoimmune IID is usually associated with activated NK and T-cells from the outset, it usually results in such very early destruction of the embryo’s root system that the patient does not even recognize that she is pregnant. Accordingly the condition usually presents as “unexplained infertility” or “unexplained IVF failure” rather than as a miscarriage.
Alloimmune IID, on the other hand, usually starts off presenting as unexplained miscarriages (often manifesting as RPL). Over time as NK/T cell activation builds and eventually becomes permanently established the patient often goes from RPL to “infertility” due to failed implantation. RPL is more commonly the consequence of alloimmune rather than autoimmune implantation dysfunction.
However, regardless, of whether miscarriage is due to autoimmune or alloimmune implantation dysfunction the final blow to the pregnancy is the result of activated NK cells and CTL in the uterine lining that damage the developing embryo’s “root system” (trophoblast) so that it can no longer sustain the growing conceptus. This having been said, it is important to note that autoimmune IID is readily amenable to reversal through timely, appropriately administered, selective immunotherapy, and alloimmune IID is not. It is much more difficult to treat successfully, even with the use of immunotherapy. In fact, in some cases the only solution will be to revert to selective immunotherapy plus using donor sperm (provided there is no “match” between the donor’s DQa profile and that of the female recipient) or alternatively to resort to gestational surrogacy.
DIAGNOSING THE CAUSE OF RPL
In the past, women who miscarried were not evaluated thoroughly until they had lost several pregnancies in a row. This was because sporadic miscarriages are most commonly the result of embryo numerical chromosomal irregularities (aneuploidy) and thus not treatable. However, a consecutive series of miscarriages points to a repetitive cause that is non-chromosomal and is potentially remediable. Since RPL is most commonly due to a uterine pathology or immunologic causes that are potentially treatable, it follows that early chromosomal evaluation of products of conception could point to a potentially treatable situation. Thus I strongly recommend that such testing be done in most cases of miscarriage. Doing so will avoid a great deal of unnecessary heartache for many patients.
Establishing the correct diagnosis is the first step toward determining effective treatment for couples with RPL. It results from a problem within the pregnancy itself or within the uterine environment where the pregnancy implants and grows. Diagnostic tests useful in identifying individuals at greater risk for a problem within the pregnancy itself include:

Karyotyping (chromosome analysis) both prospective parents
• Assessment of the karyotype of products of conception derived from previous miscarriage specimens
• Ultrasound examination of the uterine cavity after sterile water is injected or sonohysterogram, fluid ultrasound, etc.)
• Hysterosalpingogram (dye X-ray test)
• Hysteroscopic evaluation of the uterine cavity
• Full hormonal evaluation (estrogen, progesterone, adrenal steroid hormones, thyroid hormones, FSH/LH, etc.)
• Immunologic testing to include:
a) Antiphospholipid antibody (APA) panel
b) Antinuclear antibody (ANA) panel
c) Antithyroid antibody panel (i.e., antithyroglobulin and antimicrosomal antibodies)
d) Reproductive immunophenotype
e) Natural killer cell activity (NKa) assay (i.e., K562 target cell test)
f) Alloimmune testing of both the male and female partners

TREATMENT OF RPL
Treatment for Anatomic Abnormalities of the Uterus: This involves restoration through removal of local lesions such as fibroids, scar tissue, and endometrial polyps or timely insertion of a cervical cerclage (a stitch placed around the neck of the weakened cervix) or the excision of a uterine septum when indicated.
Treatment of Thin Uterine Lining: A thin uterine lining has been shown to correlate with compromised pregnancy outcome. Often this will be associated with reduced blood flow to the endometrium. Such decreased blood flow to the uterus can be improved through treatment with sildenafil and possibly aspirin.
Sildenafil (Viagra) Therapy. Viagra has been used successfully to increase uterine blood flow. However, to be effective it must be administered starting as soon as the period stops up until the day of ovulation and it must be administered vaginally (not orally). Viagra in the form of vaginal suppositories given in the dosage of 25 mg four times a day has been shown to increase uterine blood flow as well as thickness of the uterine lining. To date, we have seen significant improvement of the thickness of the uterine lining in about 70% of women treated. Successful pregnancy resulted in 42% of women who responded to the Viagra. It should be remembered that most of these women had previously experienced repeated IVF failures.
Use of Aspirin: This is an anti-prostaglandin that improves blood flow to the endometrium. It is administered at a dosage of 81 mg orally, daily from the beginning of the cycle until ovulation.
Treating Immunologic Implantation Dysfunction with Selective Immunotherapy: Modalities such as IL/IVIg, heparinoids (Lovenox/Clexane), and corticosteroids (dexamethasone, prednisone, prednisolone) can be used in select cases depending on autoimmune or alloimmune dysfunction.
The Use of IVF in the Treatment of RPL
In the following circumstances, IVF is the preferred option:
1. When in addition to a history of RPL, another standard indication for IVF (e.g., tubal factor, endometriosis, and male factor infertility) is superimposed.
2. In cases where selective immunotherapy is needed to treat an immunologic implantation dysfunction.
The reason for IVF being a preferred approach in such cases is that in order to be effective, the immunotherapy needs to be initiated well before spontaneous or induced ovulation. Given the fact that the anticipated birthrate per cycle of COS with or without IUI is at best about 15%, it follows that short of IVF, to have even a reasonable chance of a live birth, most women with immunologic causes of RPL would need to undergo immunotherapy repeatedly, over consecutive cycles. Conversely, with IVF, the chance of a successful outcome in a single cycle of treatment is several times greater and, because of the attenuated and concentrated time period required for treatment, IVF is far safer and thus represents a more practicable alternative
Since embryo aneuploidy is a common cause of miscarriage, the use of preimplantation genetic diagnosis (PGD), with tests such as CGH, can provide a valuable diagnostic and therapeutic advantage in cases of RPL. PGD requires IVF to provide access to embryos for testing.
There are a few cases of intractable alloimmune dysfunction due to absolute DQ alpha matching where Gestational Surrogacy or use of donor sperm could represent the only viable recourse, other than abandoning treatment altogether and/or resorting to adoption. Other non-immunologic factors such as an intractably thin uterine lining or severe uterine pathology might also warrant that last resort consideration be given to gestational surrogacy.
The good news is that if a couple with RPL is open to all of the diagnostic and treatment options referred to above, a live birthrate of 70%–80% is ultimately achievable.
I strongly recommend that you visit http://www.SherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.
• The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
• Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
• IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation(COS)
• The Fundamental Requirements For Achieving Optimal IVF Success
• Ovarian Stimulation for IVF using GnRH Antagonists: Comparing the Agonist/Antagonist Conversion Protocol.(A/ACP) With the “Conventional” Antagonist Approach
• Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
• Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
• Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
• The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
• Blastocyst Embryo Transfers Should be the Standard of Care in IVF
• IVF: How Many Attempts should be considered before Stopping?
• “Unexplained” Infertility: Often a matter of the Diagnosis Being Overlooked!
• IVF Failure and Implantation Dysfunction:
• The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID):PART 1-Background
• Immunologic Implantation Dysfunction (IID) & Infertility (IID):PART 2- Making a Diagnosis
• Immunologic Dysfunction (IID) & Infertility (IID):PART 3-Treatment
• Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
• Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management:(Case Report
• Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
• Intralipid (IL) Administration in IVF: It’s Composition; How it Works; Administration; Side-effects; Reactions and Precautions
• Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
• Endometrial Thickness, Uterine Pathology and Immunologic Factors
• Vaginally Administered Viagra is Often a Highly Effective Treatment to Help Thicken a Thin Uterine Lining
• Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
• A personalized, stepwise approach to IVF
• How Many Embryos should be transferred: A Critical Decision in IVF.
• The Role of Nutritional Supplements in Preparing for IVF

______________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
Laura T

I had a retrieval the day I turned 40. I was on an estrogen priming protocol and used 150 meno/300 gonal for 13 days then triggered with HCG. My afc the day I started stims was 14. Follicles grew evenly (but slowly) and day of trigger I had 13 follicles all between 12mm-19mm. My REI ended up retrieving 5 eggs total and told me the rest of the follicles were empty. 4 were mature, 3 fertilized and 1 made it to blast. I’m waiting for the pgs testing now but that cycle was a huge disappointment for me and I’m wondering if I should try ivf again or not. My amh is 1.01, fsh 16. I have a child conceived normally at 38. All tests for my husband and I are completely normal. I had a miscarriage earlier this year at 9weeks and we turned to ivf specifically to be able to pgs test to avoid another setback (physically and emotionally). Should we just try on our own and risk another mc or do we still have a chance with ivf?

reply
Dr. Geoffrey Sher

First: This is a classical example of how inaccurate AFC measurements can be.

Second, you have diminished ovaria reserve . This mandatesb a very individualized approach to ovarian stimulation.
It is primarily the egg (rather than the sperm) that determines the chromosomal integrity (karyotype) of the embryo, the most important determinant of egg/embryo competency”. A “competent” egg is therefore one that has a normal karyotype and has the best potential to propagate a “competent” embryo. In turn, a “competent embryo is one that possesses the highest potential to implant and develop into a normal, healthy, baby.
When it comes to reproductive performance, humans are the least efficient of all mammals. Even in young women under 35y, at best only 1 out of 2 eggs are chromosomally numerically normal (euploid). The remained have an irregular number of chromosomes (aneuploid) and are thus “incompetent”. The incidence of egg aneuploidy increases with age such by age 39 years, 3 in 4 are competent, and by the mid-forties, less 8 to 9 out of 10 are aneuploid. The fertilization of an aneuploid egg will inevitably lead to embryo aneuploid and an aneuploid embryo cannot propagate a normal pregnancy
Within hours of the spontaneous pre-ovulatory luteinizing hormone (LH) surge, and also following administration of the human chorionic gonadotropin (hCG) “trigger” shot (given to induce ovulation after ovarian stimulation with fertility drugs), the egg embarks on a rapid maturational process that involves halving of its 46 chromosomes to 23. During this process, (known as meiosis) 23 chromosomes are retained within the nucleus of the egg while the remaining (now redundant) 23are expelled, enveloped by a thin membrane. This small structure comes to lie immediately below the “shell” of the egg (the zona pellucida) and is known as the 1st polar body or PB-1. The spermatozoon, in the process of its maturation also undergoes meiosis at which time it too reduces its chromosomes by half. Thus in the process of fertilization the sperm divides into two separate functional gametes, each containing 23 chromosomes such that with subsequent fertilization, the 23 chromosomes in the egg, fuse with the 23 chromosomes of the mature sperm resulting in the development of an embryo that has 46 chromosomes (the normal human genome) comprising a combination of the genetic material from both partners. For the embryo to have exactly 46 chromosomes (the euploid number), both the mature egg and mature spermatozoon must contain exactly 23 chromosomes. Only euploid embryos are “competent” (capable of developing into healthy babies). Those with an irregular number of chromosomes (aneuploid embryos) are “incompetent” and are incapable of developing into healthy babies. While embryo “incompetence” can result from either egg or sperm aneuploidy, it usually stems from egg aneuploidy. However, in cases of moderate or severe male factor infertility, the sperm’s contribution to aneuploidy of the embryo increases significantly.
While embryo ploidy (numerical chromosomal integrity) is not the only determinant of its “competency, it is by far the most important and in fact is rate-limiting factor in human reproduction. It is causal in most cases of “failed implantation” which in turn is responsible for most cases of failed IVF. It causes early miscarriages and is responsible for many chromosomal birth defects such as X-monosomy and Down’s syndrome. . In most cases, embryos that develop too slowly as well as those that grow too fast (i.e. ones that by day 3 post-fertilization comprise fewer than 6 cells or more than 9 cells) and/or embryos that contain a large amount of cell debris or “fragments” are usually aneuploid and are thus “incompetent”. Additionally, embryos that fail to survive in culture to the blastocyst stage are also almost always aneuploid/”incompetent”. At a certain point in the later stage of a woman’s reproductive career, the number of remaining eggs in her ovaries falls below a certain threshold, upon which she is unable to respond optimally to fertility drugs. Often times this is signaled by a rising day 3 blood follicle stimulating hormone (FSH) level. Such women with diminishing ovarian reserve produce fewer eggs in response to ovarian stimulation. While diminished ovarian reserve is most commonly encountered in women over 40 years of age it can and indeed sometimes does occur in much younger women. A few important (but often overlooked concepts should be considered in this regard: 1. Age: It is advancing chronologic age and NOT declining ovarian reserve (as evidenced by abnormal blood AMH or FSH that results in an increased incidence of egg/embryo “incompetence” due to aneuploidy 2. DOR: The ovaries and developing eggs of women with diminished ovarian reserve (regardless of age) are highly susceptible to the adverse effect of excessive Luteinizing Hormone (LH)-induced overproduction of male hormones (mainly testosterone). A little testosterone produced by the ovary promotes normal follicle growth and orderly egg development but too much testosterone has the opposite effect. That is why (especially in women with diminished ovarian reserve who often have high LH and increased ovarian testosterone production , the use of ovarian stimulation protocols that fail to down-regulate LH production prior to initiating stimulation with gonadotropins, often prejudices egg/embryo quality and IVF outcome. Simply stated, while age is certainly the most important factor in determining the incidence of egg/embryo aneuploidy, women with diminished ovarian reserve (regardless of their age), unless they receive customized/individualized protocols of ovarian stimulation are less likely to propagate euploid (competent) eggs/embryos.
Selection of the ideal protocol for controlled ovarian stimulation: While NOTHING can be done to lower the incidence of age related aneuploidy, it is indeed possible to avoid a further increase in egg/embryo aneuploidy by individualizing the protocols of ovarian stimulation used.
• My preferred protocols for women who have relatively normal ovarian reserve:
a) The conventional long pituitary down regulation protocol: BCP are commenced early in the cycle and continued for at least 10 days. Starting 3 days before the BCP is to be discontinued, it is overlapped with an agonist such as Lupron 10U daily for three (3) days and continued until menstruation begins (which should ensue within 5-7 days of stopping the BCP). At that point an US examination is done along with a baseline measurement of blood estradiol to exclude a functional ovarian cyst. Simultaneously, the Lupron dosage is reduced to 5U daily and an FSH-dominant gonadotropin such as Follistim, Puregon or Gonal-f daily is commenced for 2 days. On the 3rd day the gonadotropin dosage is reduced and a small amount of daily menotropin (Menopur 75U daily) is added. Daily ultrasound and blood estradiol measurements are done starting on the 7th or 8th day of gonadotropin administration and continued until daily ultrasound follicle assessments indicate that most follicles have fully developed. At this point egg maturation is “triggered” using an intramuscular injection of 10,000U hCG. And an egg retrieval is scheduled for 36h later.
b) The agonist/antagonist conversion protocol (A/ACOP): This is essentially the same as the conventional long down regulation protocol (as above), except that with the onset of post-BCP menstruation, the agonist is supplanted by daily administration of a GnRH antagonist (e.g. Ganirelix, Cetrotide or Orgalutron) at a dosage of 125mcg daily until the day of the hCG trigger
• My preferred protocol for women who have relatively diminished ovarian reserve (DOR):
When it comes to women who have DOR I favor the use of the A/ACP, adding supplementary human growth hormone (HGH). In some cases where the DOR is regarded as severe, I also augment the process with estrogen priming, preferring twice weekly intramuscular administration of estradiol valerate (Delestrogen), starting with the commencement of antagonist injection and continuing for 1 week before commencing gonadotropins and continued until the hCG “trigger. I further recommend that such women be offered access to preimplantation genetic screening (PGS) for4 embryo selection and in some cases, for embryo banking (stockpiling). This is followed in a later hormone replacement cycle with the selective transfer of up to two (2) PGS-normal, euploid blastocysts. In this way we are able to capitalize on whatever residual ovarian reserve and egg quality might still exist and thereby “make hay while the sun still shines” , significantly enhancing the opportunity to achieve a viable pregnancy
• The following Ovarian stimulation protocols are in my opinion best avoided in women with DOR:
a) Microdose agonist (e.g. Lupron) “flare” protocols
b) High doses of LH/hCG-containing fertility drugs (E.G. Menopur).
c) Protocols that incorporate supplementation with male hormones (e.g. testosterone)
d) Supplementation with DHEA
e) Clomiphene citrate or Letrozole which cause an elevation in LH and thus increase ovarian male hormone (testosterone and androstenedione output.
f) “Triggering” egg maturation using too low a dosage of hCG (e.g. 5,000U rather than 10,000U) or Ovidrel e.g. 250mcg of Ovidrel rather than 500mcg)
g) “Triggering” women who have large numbers of follicles using an agonist such as Lupron, Superfact or Buserelin.
• Preimplantation Genetic Screening (PGS):
The introduction of preimplantation genetic screening (PGS) for the first time permits identification of all the chromosomes in the egg and embryo such that we can now far better identify “competent” (euploid) embryos for selective transfer to the uterus. This vastly improves the efficiency and success of the IVF process. This additional tool has better equipped us to manage cases with DOR. In my opinion, next generation gene sequencing (NGS), currently represents the most reliable method for performing PGS.

3rd: “Your empty follicles” are likely related to the protocol used for ovarian stimulation.

Frequently, when following vigorous and often repeated flushing of follicles at egg retrieval they fail to yield eggs, it is ascribed to “Empty Follicle Syndrome.” This is a gross misnomer, because all follicles contain eggs. So why were no eggs retrieved from the follicles? Most likely it was because they would/could not yield the eggs they harbored.
This situation is most commonly seen in older women, women who have severely diminished ovarian reserve, and in women with polycystic ovarian syndrome (PCOS). In my opinion it is often preventable when an optimal, individualized and strategic protocol for controlled ovarian stimulation (COS) is employed and the correct timing and dosage is applied to the “hCG trigger shot.”
Normally, following optimal ovarian stimulation, the hCG “trigger shot” is given for the purpose of it triggering meiosis (reproductive division) that is intended to halve the number of chromosomes from 46 to 23 within 32-36 hours. The hCG trigger also enables the egg to signal the “cumulus cells” that bind it firmly to the inner wall of the follicle (through enzymatic activity), to loosen or disperse, so that the egg can detach and readily be captured at egg retrieval (ER).
Ordinarily, normal eggs (and even those with only one or two chromosomal irregularities) will readily detach and be captured with the very first attempt to empty a follicle. Eggs that have several chromosomal numerical abnormalities (i.e., are “complex aneuploid”) are often unable to facilitate this process. This explains why when the egg is complex aneuploid, its follicle will not yield an egg…and why, when it requires repeated flushing of a follicle to harvest an egg, it is highly suggestive of it being aneuploid and thus “incompetent” (i.e., incapable of subsequently propagating a normal embryo).
Older women, women with diminished ovarian reserve, and those with polycystic ovarian syndrome, tend to have more biologically active LH in circulation. LH causes production of male hormone (androgens, predominantly testosterone), by ovarian connective tissue (stroma/theca). A little testosterone is needed for optimal follicle development and for FSH-induced ovogenesis (egg development). Too much LH activity compromises the latter, and eggs so affected are far more likely to be aneuploid following meiosis.
Women with the above conditions have increased LH activity and are thus more likely to produce excessive ovarian testosterone. It follows that sustained, premature elevations in LH or premature luteinization (often referred to as a “premature LH surge”) will prejudice egg development. Such compromised eggs are much more likely to end up being complex aneuploid following the administration of the hCG trigger, leading to fruitless attempts at retrieval and the so called “empty follicle syndrome.”
The developing eggs of women who have increased LH activity (older women, women with diminished ovarian reserve, and those with PCOS) are inordinately vulnerable to the effects of protracted exposure to LH-induced ovarian testosterone. Because of this, the administration of medications that provoke further pituitary LH release (e.g., clomiphene and Letrozole), drugs that contain LH or hCG (e.g., Menopur), or protocols of ovarian stimulation that provoke increased exposure to the woman’s own pituitary LH (e.g., “flare-agonist protocols”) and the use of “late pituitary blockade” (antagonist) protocols can be prejudicial.
The importance of individualizing COS protocol selection, precision with regard to the dosage and type of hCG trigger used, and the timing of its administration in such cases cannot be overstated. The ideal dosage of urinary-derived hCG (hCG-u) such as Novarel, Pregnyl and Profasi is 10,000U. When recombinant DNA-derived hCG (hCG-r) such as Ovidrel is used, the optimal dosage is 500mcg. A lower dosage of hCG can, by compromising meiosis, increase the risk of egg aneuploidy, and thus of IVF outcome.
There is in my opinion no such condition as “Empty Follicle Syndrome.” All follicles contain eggs. Failure to access those eggs at ER can often be a result of the protocol used for controlled ovarian stimulation.

I strongly recommend that you visit http://www.DrGeoffreySherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.

• The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
• Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
• IVF: Factors Affecting Egg/Embryo “competency” during Controlled Ovarian Stimulation (COS)
• The Fundamental Requirements for Achieving Optimal IVF Success
• Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
• Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
• Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
• Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
• The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
• Blastocyst Embryo Transfers should be the Standard of Care in IVF
• IVF: How Many Attempts should be considered before Stopping?
• “Unexplained” Infertility: Often a matter of the Diagnosis Being Overlooked!
• IVF Failure and Implantation Dysfunction:
• The Role of Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 1-Background
• Immunologic Implantation Dysfunction (IID) & Infertility (IID): PART 2- Making a Diagnosis
• Immunologic Dysfunction (IID) & Infertility (IID): PART 3-Treatment
• Thyroid autoantibodies and Immunologic Implantation Dysfunction (IID)
• Immunologic Implantation Dysfunction: Importance of Meticulous Evaluation and Strategic Management 🙁 Case Report)
• Intralipid and IVIG therapy: Understanding the Basis for its use in the Treatment of Immunologic Implantation Dysfunction (IID)
• Intralipid (IL) Administration in IVF: It’s Composition; how it Works; Administration; Side-effects; Reactions and Precautions
• Natural Killer Cell Activation (NKa) and Immunologic Implantation Dysfunction in IVF: The Controversy!
• Endometrial Thickness, Uterine Pathology and Immunologic Factors
• Vaginally Administered Viagra is Often a Highly Effective Treatment to Help Thicken a Thin Uterine Lining
• Treating Out-of-State and Out-of-Country Patients at Sher-IVF in Las Vegas:
• A personalized, stepwise approach to IVF
• How Many Embryos should be transferred: A Critical Decision in IVF?
______________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

reply
Sheena Swan

Hi Dr Sher, what is lovenox used for? How do you know whether or not you need it?

reply
Dr. Geoffrey Sher

It is needed selectively for women who harbor antiphospholipid antibodies (APA); have had a prior thromboembolism; and in certain types of thrombophilia (hereditary clotting defects).

Geoff Sher

reply
Joseph

Hi Dr

In our last round of ivf, our 6th failed transfer, for the first time we had a high number of low quality eggs

of 1 7 eggs retrieved only 7 were fertilized. here is our protocol below

o Microdose Lupron 20 units, Take 20 units SQ in AM and PM
o Follistim 200 units, Take 200 units in the AM
o Follistim 175 units, Take 175 units in the PM
o Low Dose HCG 5 units, Inject 5 units in PM
o Omnitrope, inject 6 units everyday
o Dexamethasone 1 mg, Take 1 tablet every am

i am stumped and not sure what else to.

we had 2 miscarriages at around 8 weeks. Stuck as to what to do next. Any suggestions as to what to change in protocol

reply
Dr. Geoffrey Sher

Hi Joseph!

I suggest we talk!

Please call 702-533-2691 and have Patti set you up with an online consultation so we can discuss this in detail

The importance of the IVF stimulation protocol on egg/embryo quality cannot be overstated. This factor seems often to be overlooked or discounted by t IVF practitioners who use a “one-size-fits-all” approach to ovarian stimulation. My experience is that the use of individualized/customized COS protocols can greatly improve IVF outcome. While no one can influence underlying genetics or turn back the clock on a woman’s age, any competent IVF specialist should be able to tailor the protocol for COS to meet the individual needs of the patient.
Gonadotropins (LH and FSH), whether produced by the pituitary gland or administered by way of fertility drugs, have different “targeted” sites of action in the ovary. FSH targets cells that line the inner wall of the follicle (granulosa cells) and also form the cumulus cells that bind the egg to the inner surface of the follicle. Granulosa cells are responsible for estrogen production.
LH, on the other hand, targets the ovarian connective tissue (stroma/theca) that surrounds ovarian follicles resulting in the production of male hormones such as testosterone (predominantly), androstenedione and DHEA. These androgens are then transported to the granulosa cells of the adjacent follicles in a “bucket brigade fashion”. There FSH converts testosterone to estradiol, causing granulosa cells to multiply (proliferate) and produce estradiol, follicles to grows and eggs to develop (ovogenesis) It follows that ovarian androgens (mainly testosterone) is absolutely indispensable to follicle/ egg growth and development.
However, the emphasis is on a “normal” amount of testosterone. Over-exposure of the follicle to testosterone can in my opinion, compromise egg development and lead to an increased likelihood of chromosomal irregularities (aneuploid) following LH/hCG-induced egg maturational division (meiosis) and compromise embryo “competency/quality.
Ovarian androgens can also reach the uterine lining where they sometimes will compromise estrogen receptor -induced endometrial growth and development.
A significant percentage of older women and those who have diminished ovarian reserve (DOR) have increased LH activity is increased. Such women either over-produce LH and/or the LH produced is far more biologically active. Chronically increased LH activity leads to overgrowth of ovarian connective tissue (stroma/theca). This condition, which is often referred to as Stromal Hyperplasia or hyperthecosis can result in excessive ovarian androgen/testosterone production and poorer egg-embryo quality/competency, Similarly, women with polycystic ovarian syndrome (PCOS), also characteristically have Stromal hyperplasia/hyperthecosis due to chronically increased LH activity. Thus they too often manifest with increased ovarian androgen production. It is therefore not surprising that “poor egg/embryo quality” is often also a feature of PCOS.
In my opinion, the over-administration of LH-containing menotropins such as Menopur, [which is comprised of roughly equal amount of FSH and hCG ,which acts similar to LH)], to older women, women with DOR and those who have PCOS can also lead to reduced egg/embryo competency . Similarly, drugs such as clomiphene or Letrozole that cause the pituitary gland to release excessive amounts of LH, are also potentially harmful to egg development and in my opinion, are best omitted from IVF COS protocols. This is especially the case when it comes to older women and those with DOR, who in my opinion should preferably be stimulated using FSH-dominant products such as Follistim, Puregon, Fostimon and Gonal-F.
Gonadotropin releasing hormone agonists (GnRHa): GnRHa such as Lupron, Buserelin, Superfact, Gonopeptyl etc. are often used to launch ovarian stimulation cycles. They act by causing an initial outpouring followed by a depletion of pituitary gonadotropins. This results in LH levels falling to low concentrations, within 4-7 days, thereby establishing a relatively “LH-free environment”. When GnRHa are administered for about 7 days prior to initiating gonadotropin stimulation (“long” pituitary down-regulation”), the LH depletion that will exist when COS is initiated, will usually be protective of subsequent egg development. In contrast, when the GnRHa administration commences along with the initiation of gonadotropin therapy, there will be a resultant immediate surge in the release of pituitary LH with the potential to increase ovarian testosterone to egg-compromising levels , from the outset of COS. This, in my opinion could be particularly harmful when undertaken in older women and those who have DOR.
GnRH-antagonists such as Ganirelix, Cetrotide and Orgalutron, on the other hand, act very rapidly (within hours) to block pituitary LH release. The purpose in using GnRH antagonists is to prevent the release of LH during COS. In contrast, the LH-lowering effect of GnRH agonists develops over a number of days.
GnRH antagonists are traditionally given, starting after 5th -7th day of gonadotropin stimulation. However, when this is done in older women and those (regardless of age) who have DOR, LH-suppression might be reached too late to prevent the deleterious effect of excessive ovarian androgen production on egg development in the early stage of ovarian stimulation. This is why, it is my preference to administer GnRH-antagonists, starting at the initiation of gonadotropin administration.
My preferred Protocols for Controlled Ovarian Stimulation (COS):
1. “Long” GnRHa (Lupron/Buserelin/Superfact/Gonopeptyl) Pituitary Down-regulation Protocol: The most commonly prescribed protocol for GnRHa/gonadotropin administration is the so-called “long protocol”. Here, GnRHa is given, starting a week or so prior to menstruation. This results in an initial rise in FSH and LH , which is rapidly followed by a precipitous fall to near zero. It is followed by a withdrawal bleed (menstruation), whereupon gonadotropin treatment should commence, while daily Lupron injections continue, to ensure a “low LH” environment. A modification to the “long protocol” which I prefer prescribing for older women and in cases of DOR, is the Agonist/Antagonist Conversion Protocol (A/ACP) where, upon the onset of a GnRHa-induced bleed, the agonist is supplanted by an antagonist (Ganirelix/Cetrotide/Orgalutron) and this is continued until the hCG trigger. In many such cases I often supplement with human growth hormone (HGH) in such cases in an attempt to enhance egg mitochondrial activity and so enhance egg development. This approach is often augmented with preimplantation genetic screening (PGS) of all embryos that reach the expanded blastocyst stage of development by day 5-6 post-fertilization. I also commonly recommend blastocyst banking to many such patients.
2. Short (“Flare”) GnRHa Protocol: Another GnRHa usage for COS is the so called “(micro) flare protocol”. This involves initiating gonadotropin therapy commensurate with initiation of gonadotropin administration. The supposed objective is to deliberately allow Lupron to elicit an initial surge (“flare”) in pituitary FSH release in order to augment FSH administration by increased FSH production. Unfortunately, this “spring board effect” constitutes “a double-edged sword”. While it indeed increases the release of FSH, it at the same time causes a surge in LH release. The latter can evoke excessive ovarian stromal/thecal androgen production which could potentially compromise egg quality, especially when it comes to older women and women with DOR. I am of the opinion that by evoking an exaggerated ovarian androgen response, such “(micro) flare protocols” can harm egg/embryo quality and reduce IVF success rates, especially when it comes to COS in older women, and in women with diminished ovarian reserve. Accordingly, I do not prescribe such protocols to my IVF patients.
3. Estrogen Priming – This is the approach I sometimes prescribe for my patients who have virtually depleted ovarian reserve , as determined by very low blood anti-Mullerian hormone AMH levels (<0.2ng/ml or 2 pmol/L) and are thus likely to be very “poor responders”. It involves a modified A/ACP. We start with estrogen skin patches applied every 2nd day (or with the BCP) for 10 days or longer, overlap it for 3 days with a GnRHa whereupon the estrogen priming is stopped. Th GnRHa is continued until the onset of menstruation (usually 5-7 days later) to cause pituitary LH, down-regulation. Upon menstruation and confirmation by ultrasound and measurement of blood estradiol levels that adequate ovarian suppression has been achieved, The patient is given twice-weekly injections of estradiol valerate (Delestrogen) for a period of 7-8 days whereupon COS is initiated using a relatively high dosage FSH-(Follistim, Fostimon, Puregon or Gonal F), which is continued along with daily administration of GnRH antagonist until the “hCG “trigger.” This approach is often augmented with HGH administration throughout the process of COS and by preimplantation genetic screening (PGS) of all embryos that reach the expanded blastocyst stage of development by day 5-6 post-fertilization. I also commonly recommend blastocyst banking to many such patients.
Estrogen Priming has succeeded in significantly enhancing ovarian response to gonadotropins in many of otherwise very poor responders.
Triggering egg Maturation prior to egg Retrieval: hCG versus GnRHa
With ovulation induction using fertility drugs, the administration of 10,000U hCGu (Pregnyl; Profasi, Novarel) or 500mcg hCGr (Ovidrel/Ovitrel) “trigger”) sends the eggs (into maturational division (meiosis). This process is designed to halve the chromosome number, resulting in mature eggs (M2) that will have 23 chromosomes rather that the 46 chromosomes they had prior to the “trigger”. Such a chromosomally numerically normal (euploid), mature (MII) eggs, upon being fertilized will (hopefully) propagate euploid embryos that have 46 chromosomes and will be “: competent” to propagate viable pregnancies. In my opinion, the key is to always “trigger” with no less than 10,000U of hCGu or 500mcg hCGr (Ovidrel/Ovitrel). Any lesser dosage often will reduce the efficiency of meiosis and increase the risk of the eggs being aneuploid. I personally do not use the agonist (Lupron) “trigger”, unless it is combined with (low dosage) hCG. The supposed reason for using the agonist, (Lupron) “trigger” is that by inducing meiosis through compelling a surge in the release of LH by the pituitary gland, the risk it reduces the risk of OHSS. This may be true, but it comes at the expense of egg quality because the extent of the induced LH surge varies and if too little LH is released, meiosis can be compromised, thereby increasing the likelihood of aneuploid and immature (MI) eggs. And there are other better approaches to preventing OHSS (e.g. “prolonged coasting”), in my opinion.
Use of the Birth Control Pill (BCP) to launch IVF-COS.
In natural (unstimulated) as well as in cycles stimulated with fertility drugs, the ability of follicles to properly respond to FSH stimulation is dependent on their having developed FSH-responsive receptors. Pre-antral follicles (PAF) do not have such primed FSH receptors and thus cannot respond properly to FSH stimulation with gonadotropins. The acquisition of FSH receptor responsivity requires that the pre-antral follicles be exposed to FSH, for a number of days (5-7) during which time they attain “FSH-responsivity” and are now known as antral follicles (AF). These AF’s are now able to respond properly to stimulation with administered FSH-gonadotropins. In regular menstrual cycles, the rising FSH output from the pituitary gland insures that PAFs convert tor AF’s. The BCP (as well as prolonged administration of estrogen/progesterone) suppresses FSH. This suppression needs to be countered by artificially causing blood FSH levels to rise in order to cause PAF to AF conversion prior to COS commencing, otherwise pre-antral-to –antral follicle conversion will not take place in an orderly fashion, the duration of ovarian stimulation will be prolonged and both follicle and egg development may be compromised. GnRH agonists cause an immediate surge in release of FSH by the pituitary gland thus causing conversion from PAF to SAF. This is why women who take a BCP to launch a cycle of COS need to have an overlap of the BCP with an agonist. By overlapping the BCP with an agonist for a few days prior to menstruation the early recruited follicles are able to complete their developmental drive to the AF stage and as such, be ready to respond appropriately to optimal ovarian stimulation. Using this approach, the timing of the initiation of the IVF treatment cycle can readily and safely be regulated and controlled by varying the length of time that the woman is on the BCP.
Since optimizing follicular response to COS requires that prior to stimulation with gonadotropins, FSH-induced conversion from PAF to AF’s first be completed and the BCP suppresses FSH, it follows when it comes to women launching COS coming off a BCP something needs to be done to cause a rise in FSH for 5-7 days prior to menstruation heralding the cycle of CO S. This is where overlapping the BCP with a GnRHa comes in. The agonist causes FSH to be released by the pituitary gland and if overlapped with the BCP for several days and this will (within 2-5 days) facilitate PAF to AF conversion…. in time to start COS with the onset of menstruation. Initiating ovarian stimulation in women taking a BCP, without doing this is suboptimal.
I strongly recommend that you visit www.SherIVF.com. Then go to my Blog and access the “search bar”. Type in the titles of any/all of the articles listed below, one by one. “Click” and you will immediately be taken to those you select. Please also take the time to post any questions or comments with the full expectation that I will (as always) respond promptly.
• The IVF Journey: The importance of “Planning the Trip” Before Taking the Ride”
• Controlled Ovarian Stimulation (COS) for IVF: Selecting the ideal protocol
• The Fundamental Requirements For Achieving Optimal IVF Success
• Use of GnRH Antagonists (Ganirelix/Cetrotide/Orgalutron) in IVF-Ovarian Stimulation Protocols.
• Anti Mullerian Hormone (AMH) Measurement to Assess Ovarian Reserve and Design the Optimal Protocol for Controlled Ovarian Stimulation (COS) in IVF.
• The “Biological Clock” and how it should Influence the Selection and Design of Ovarian Stimulation Protocols for IVF.
• A Rational Basis for selecting Controlled Ovarian Stimulation (COS) protocols in women with Diminished Ovarian Reserve (DOR)
• Diagnosing and Treating Infertility due to Diminished Ovarian Reserve (DOR)
• Ovarian Stimulation in Women Who have Diminished Ovarian Reserve (DOR): Introducing the Agonist/Antagonist Conversion protocol
• Controlled Ovarian Stimulation (COS) in Older women and Women who have Diminished Ovarian Reserve (DOR): A Rational Basis for Selecting a Stimulation Protocol
• Optimizing Response to Ovarian Stimulation in Women with Compromised Ovarian Response to Ovarian Stimulation: A Personal Approach.
• Egg Maturation in IVF: How Egg “Immaturity”, “Post-maturity” and “Dysmaturity” Influence IVF Outcome:
• Commonly Asked Question in IVF: “Why Did so Few of my Eggs Fertilize and, so Many Fail to Reach Blastocyst?”
• Human Growth Hormone Administration in IVF: Does it Enhances Egg/Embryo Quality and Outcome?
• The BCP: Does Launching a Cycle of Controlled Ovarian Stimulation (COS). Coming off the BCP Compromise Response?
• Staggered IVF
• Staggered IVF with PGS- Selection of “Competent” Embryos Greatly Enhances the Utility & Efficiency of IVF.
• Staggered IVF: An Excellent Option When. Advancing Age and Diminished Ovarian Reserve (DOR) Reduces IVF Success Rate
• Embryo Banking/Stockpiling: Slows the “Biological Clock” and offers a Selective Alternative to IVF-Egg Donation
• Preimplantation Genetic Testing (PGS) in IVF: It should be Used Selectively and NOT be Routine.
• IVF: Selecting the Best Quality Embryos to Transfer
• Preimplantation Genetic Sampling (PGS) Using: Next Generation Gene Sequencing (NGS): Method of Choice.
• PGS in IVF: Are Some Chromosomally abnormal Embryos Capable of Resulting in Normal Babies and Being Wrongly Discarded?
• PGS and Assessment of Egg/Embryo “competency”: How Method, Timing and Methodology Could Affect Reliability
• IVF outcome: How Does Advancing Age and Diminished Ovarian Reserve (DOR) Affect Egg/Embryo “Competency” and How Should the Problem be addressed.

______________________________________________________
ADDENDUM: PLEASE READ!!
INTRODUCING SHER FERTILITY SOLUTIONS (SFS)
Founded in April 2019, Sher Fertility Solutions (SFS) offers online (Skype/FaceTime) consultations to patients from > 40 different countries. All consultations are followed by a detailed written report presenting my personal recommendations for treatment of what often constitute complex Reproductive Issues.

If you wish to schedule an online consultation with me, please contact my assistant (Patti Converse) by phone (800-780-7437/702-533-2691), email (concierge@SherIVF.com) or, enroll online on then home-page of my website (www.SherIVF.com).

PLEASE SPREAD THE WORD ABOUT SFS!

Geoff Sher

Since optimizing follicular response to COS requires that prior to stimulation with gonadotropins, FSH-induced conversion from PAF to AF’s first be completed and the BCP suppresses FSH, it follows when it comes to women launching COS coming off a BCP something needs to be done to cause a rise in FSH for 5-7 days prior to menstruation heralding the cycle of CO S. This is where overlapping the BCP with a GnRHa comes in. The agonist causes FSH to be released by the pituitary gland and if overlapped with the BCP for several days and this will (within 2-5 days) facilitate PAF to AF conversion…. in time to start COS with the onset of menstruation. Initiating ovarian stimulation in women taking a BCP, without doing this is suboptimal.

I look forward to talking to you!

Geoff Sher

reply
Stephanie P

Hi! I’m newly pregnancy and nervous because of a previous mmc.

My levels are
12 dpo 54
14 dpo 145
18 dpo 741
21 dpo 2055

Progesterone has been 31 -32 both times it’s been checked most recently at 21 dpo

Any thoughts on these numbers? Rate of increase slightly slowed down during the last interval but still only slightly over 48 hours to double

Thank you so much!

reply
Kayla

Hi Dr. Sher.

I had HCG drawn at 16 dpo and again on 18dpo (yesterday) and levels went from 67 to 264. I would be optimistic but I’ve been bleeding like a regular menstrual period for 6 days now. Thoughts?

reply
Dr. Geoffrey Sher

I am afraid, only time will tell. Repeat the hCG serially and then do an US at 6-7 weeks for a definitive assessment!

Good luck!

Geoff Sher

reply
Julie

Hi Dr. Sher,

On October 7 I transfered a PGS normal day 6 6bb embryo. Betas have been:

9dp6dt 14
11dp6dt 40
13dp6dt 100
18dp6dt 589
21dp6dt 1184

At day 21 they saw a gestational sac and yolk sac. When can I start to not worry to much and feel more relaxed? Is it a good sign to have seen this and betas are doubling appropriately? My HCG was low with my previous pregnancy too, but started at 70 not 14!

Thank you,

Julie

reply
Dr. Geoffrey Sher

I am guardedly optimistic that all will be fine! Repeat the US in 1 week for a definitive evaluation.

Good luck!

Geoff Sher

reply
Sheena Swan

Hi Dr Sher, if taking baby aspirin and lovenox during FET, does this need to be replicated during the ERA test, as the ERA test is supposed to match the same FET protocol? Or do you only need to replicate taking the same FET medications (estrogen, progesteron, lupron)? I’m guessing if you are taking supplements in FET you do not need to take supplements during the ERA test so the same applies to baby aspirin and lovenox?

reply
Sheena Swan

Thank you. Why doesn’t aspirin and lovenox not need to be replicated but estrogen and progesterone does?

reply
Dr. Geoffrey Sher

Forgive me but I do not understand your question.

Please clarify!

Geoff Sher

reply
Sheena Swan

Sorry … to rephrase … why don’t you need to include (or replicate) lovenox and baby aspirin in the ERA test cycle, but Estrogen and Progesterone do need to be included/replicated in the ERA cycle? What about Prednisone, does it need to be included in the ERA cycle if it is being used in the FET?

Dr. Geoffrey Sher

The reason is that neither Lovenox , nor baby aspirin, will affect the endometrium as far as the “window of implantation is concerned.

I personally do not prescribe aspirin in-cycle as it does not help and besides, it can increase the chance of concealed intrauterine pregnancy at ET.

Geoff Sher.

Geoff Sher

Mara

Hi Dr. Sher,

I am doing your A/ACP Protocol. I took my last lupron last night. I went in for a baseline ultrasound today and it showed a size 10 and a size 3 follicle. Would you continue the protocol as discussed? (start cetrotide tonight + 400 Gonal F + HGH?

reply
Dr. Geoffrey Sher

Your own RE needs to make that assessment based upon baseline US and blood estradiol!

Geoff Sher

reply
Taylor

Hi Dr. Scher,

I got a positive pregnancy test (urine) on 13DPO, one day prior to my expected period. On this same day, I had tanish/brownish discharge and cramping, but went in for betas anyhow.

13 DPO: 61.3 hcg / 19 progesterone
15 DPO: 169.6 hcg / 18.5 progesterone.

Does this look normal thus far? The spotting didn’t last beyond 13 dpo, but I have had some cramping and ovary twinges off and on since. I am worried my numbers are low.

Thank you!

reply
Taylor

Hi again,

I’m back because I feel like my RE is giving me false hope/isn’t telling me everything.

Have had two more sets of betas. My HCG is doubling nicely (last read was 823.8), but progesterone has dropped again. Progesterone 13DPO was 19, 19 DPO was 14.9.

From everything I’m reading online, dropping progesterone indicates an ectopic or impending miscarriage.

In your opinion, should I begin preparing for a loss?

Thank you!

reply
Dr. Geoffrey Sher

The P4 level can fluctuate . I would not write this pregnancy off based on these levels just yet.

Good luck!

Geoff Sher

Ask a question or post a comment

Your email address will not be published. Required fields are marked *